Explanation of the Meyer-Neldel Rule

P. Stallinga, Universidade do Algarve (FCT, OptoEl, CEOT) Rudolstadt, 30 September 2004

Trap states as an explanation of the Meyer-Neldel Rule

P. Stallinga, Universidade do Algarve (FCT, OptoEl, CEOT) Rudolstadt, 30 September 2004

Overview

What is the Meyer-Neldel Rule?

Background: Traps in organic FETs in Faro Results and discussion

OptoEI-CEOT in Faro

Specialized in electronic characterization of organic and biological electronic devices.

Sensitive equipment with custom made control software.

DLTS (the only "organic" DLTS)

Organics-specific FET measurement system

What is the Meyer-Neldel Rule?

Observation without explanation*

The thermal activation energy of a process (P) depends on a certain parameter (z).

There exists a temperature (T_{MN}) where the dependence of *P* on *z* disappears.

$$P = P_0 \exp(-E_A/kT)$$
$$P_0 = P_{\rm MN} \exp(E_A/kT_{\rm MN})$$

1/T(1/K)

* Original article: W. Meyer and H. Neldel, Z. Techn. 18, 588 (1937).

Examples of the Meyer-Neldel Rule

Processes	Parameters	Devices/materials
current	gas concentration	α-Si
diffusion*	pressure	organic ½cons
ionic currents	electrical bias	gas detectors
		High-Tc supercons
		glasses
		liquid ½cons
		polycryst. Si
		CCDs

* Here the MNR is called the Compensation Effect.

Examples of the Meyer-Neldel Rule

Processes	Parameter	Devices/materials
current	gas concentration	α-Si
diffusion*	pressure	organic ½cons
ionic currents	electrical bias	gas detectors
		High-Tc supercons
		glasses
		liquid ½cons
	1	polycryst. Si
		CCDs

All less-than-perfect-crystalline materials

* Here the MNR is called the Compensation Effect.

Meyer-Neldel Rule in our T6 TFT

P. Stallinga et al., J. Appl. Phys. October 2004

Non-linear transfer curves

Start with classic theory. However: Non-linear Transfer curves observed

Non-linear transfer curves

Currents are linearized by taking the nth root

Recently explained on model for amorphous silicon, see P. Stallinga, J.Appl.Phys. October 2004.

Poole-Frenkel

Non-linear IV curves observed

Poole-Frenkel

Non-linear IV curves explained

The fact that the plot is linear in this scale proofs the validity of the model of Poole-Frenkel. P. Stallinga, J.Appl.Phys. October 2004.

Stressing

 $Gate \ bias \ (V) \quad \text{H.L. Gomes, Appl.Phys.Lett. 2004.}$

Note: Already the fact that a threshold voltage exists in an accumulation-type FET proofs the existence of traps! Theoretically, the threshold voltage is zero (or >0, "Normally-on FET").

Decaying currents

Decaying currents

"Glassy relaxation"* or "stretched exponential". Transient caused by trapping.

P. Stallinga, J.Appl.Phys. October 2004.

*original article: R. Kohlrausch in Rinteln, Ann. Phys. und Chemie 72, 353 (1847).

Traps!

Thermally scanned current

An *I*-*T* curve shows that charges are liberated from trap states.

Charges are liberated from trap states.

not
$$I(T, V_g) \propto \mu(T, V_g) \times p$$

but $I(T, V_g) \propto \mu \times p(T, V_g)$

Amorphous silicon: Shur & Hack

* Original article: M. Shur and M. Hack, J. Appl. Phys. 55, 3831 (1984).

Shur & Hack

$$I_{\rm ds} = \frac{q\mu_0 W}{L} f(T, T_2) \left[C_{\rm ox} \left(|V_{\rm g} - V_t| \right) \right]^{\left(\frac{2T_2}{T} - 1\right)} V_{\rm ds}$$
(53)
$$f(T, T_2) = N_{\rm V} \exp\left(\frac{-E_{F0}}{kT}\right) \frac{kT\epsilon}{q} \left(\frac{\sin(\pi T/T_2)}{2\pi\epsilon T_2 kT g_{F0}}\right)^{T_2/T}$$
(51)

Notes:

A factor q was deleted from original Equation 51.

The model is similar to Vissenberg's, with difference that conduction is through band states instead of hopping conduction.

Linking Shur-Hack to our organic FETs

 $I_{\rm ds}$ depends on $V_{\rm g}$, but not in a classical way (not $\propto V_{\rm g}$). Non-linear transfer curves

$$I_{\rm ds} = \frac{q\mu_0 W}{L} f(T, T_2) \left[C_{\rm ox} \left(|V_{\rm g} - V_t| \right) \right]^{\left(\frac{2T_2}{T} - 1\right)} V_{\rm ds}$$
(53)
$$f(T, T_2) = N_{\rm V} \exp\left(\frac{-E_{F0}}{kT}\right) \frac{kT\epsilon}{q} \left(\frac{\sin(\pi T/T_2)}{2\pi\epsilon T_2 kT g_{F0}}\right)^{T_2/T}$$
(51)

Linking Shur-Hack to Meyer-Neldel

First halve of Meyer-Neldel Rule:

Dependence on V_g disappears at a temperature $T = 2T_2$.

$$I_{\rm ds} = \frac{q\mu_0 W}{L} f(T, T_2) \left[C_{\rm ox} \left(|V_{\rm g} - V_t| \right) \right]^{\left(\frac{2T_2}{T} - 1\right)} V_{\rm ds}$$
(53)

$$f(T,T_2) = N_{\rm V} \exp\left(\frac{-E_{F0}}{kT}\right) \frac{kT\epsilon}{q} \left(\frac{\sin(\pi T/T_2)}{2\pi\epsilon T_2 kTg_{F0}}\right)^{T_2/T}$$
(51)

P. Stallinga, TPE04 Rudolstadt 30-Sept-2004

e

Linking Shur-Hack to Meyer-Neldel

Second halve of Meyer-Neldel Rule:

Activation energy depends on V_g : For $T \ll T_2$ the Arrhenius plots are linear and

$$E_A = E_{F0} - kT_2 \left[\ln \left(\frac{1}{2\epsilon (kT_2)^2 g_{F0}} \right) - 2\ln \left(C_{\text{ox}} \left(|V_{\text{g}} - V_t| \right) \right) \right]$$

$$I_{\rm ds} = \frac{q\mu_0 W}{L} f(T, T_2) \left[C_{\rm ox} \left(|V_{\rm g} - V_t| \right) \right]^{\left(\frac{2T_2}{T} - 1\right)} V_{\rm ds}$$
(53)

$$f(T, T_2) = N_{\rm V} \exp\left(\frac{-E_{F0}}{kT}\right) \frac{kT\epsilon}{q} \left(\frac{\sin(\pi T/T_2)}{2\pi\epsilon T_2 kT g_{F0}}\right)^{T_2/T}$$
(51)

Used: $sin(x) \approx x$ for $x \ll 1$ and $a^x = exp(x \ln(a))$

Simulation

Note: No measurements possible at/close to T_2 (currents drop and diverge).

Experiment. Sexithiophene TFT

Note: To avoid stressing, measurements limited to below 220 K (see talk of Henrique)

Experiment. Sexithiophene TFT

Conclusions

3 things important for organic FETs (T6):

Traps traps & traps

- A: Responsible for non-linear transfer curves ($I_{\rm ds} \propto V_{\rm g}^{\gamma}$)
- A: Responsible for non-linear IV curves ($I_{ds} \propto V_{ds} \exp(-\sqrt{V_{ds}})$)
- A: Responsible for temperature activation of current

A: (P. Stallinga et al., J. Appl. Phys., Oct. 2004)

B: Responsible for stressing

B: (H.L.Gomes et al., Appl. Phys. Lett. 2004)

C: Responsible for the Meyer Neldel Observation

C: (P. Stallinga *et al.*, to be published)

Thanks: Henrique Gomes (OptoEl/CEOT) All members of the MONA-LISA network CNR-ISM Bologna

