
Computer Architecture|
with (MIPS) Assembly

Peter Stallinga

peter@stallinga.org

Computer Architecture: with (MIPS) Assembly (paperback)
Peter Stallinga
v. 2.0 (November 26, 2024)

Copyright © 2024, Peter Stallinga. All rights reserved

ISBN: 978-1-31281-319-9

Typefaces: Times Roman, Helvetica, Free Sans
Typesetting: LATEX2e with TexLive in TexMaker
Graphical: Inkscape and PjotrSoft. All pictures made by the author, except
the photo used for the cover (Weber VanHeber) and Pictures 5 (adapted
from Wikipedia), 6 (Wikipedia), 88 (output of MARS 4.5 of Sanderson and
Vollmar), and 94 (Wikipedia).

stallinga.org
Non-pro�t science organization

ii

Contents

1 Introduction . 1

2 Number systems . 11
2.1 Binary numbers . 16
2.2 Octal, hexadecimal and binary-coded decimal 18
2.3 Arithmetic . 19
2.4 Number conversion . 25
2.5 Negative numbers . 28
2.6 ASCII . 32
2.7 Gray code . 32
2.8 Floating point . 33
2.9 Exercises . 37

3 Boolean algebra/logic . 41
3.1 Set theory and Boolean algebra 42
3.2 Huntington postulates . 44
3.3 Formal derivation of the truth tables 51
3.4 From postulates to truth tables 55
3.5 sum-of-products (SoP) and product-of-sums (PoS) 56
3.6 Karnaugh maps . 59
3.7 Exercises . 65

4 Hardware components . 69
4.1 Electronics: from transistors to gates 69
4.2 Tri-state . 76
4.3 From gates to logic circuits 78
4.4 Karnaugh maps in electronics 84
4.5 Timing; transient behavior. Glitches and hazards 85
4.6 Latches, flip-flops and memory 89
4.7 Finite-state machines (FSMs) 95

4.7.1 Moore machine sequencers 96
4.7.2 Mealy machines . 100

4.8 Exercises . 104

iii

iv CONTENTS

5 Integration . 109
5.1 Half-adder/full-adder . 109
5.2 Summing and subtracting . 112
5.3 Advanced adding and subtracting 114
5.4 Advanced logic circuits . 114

6 Computers . 123
6.1 Arithmetic and logic unit (ALU) 123
6.2 Central processing unit (CPU) 125
6.3 Control logic . 126
6.4 Programming the CPU . 129
6.5 Advanced arithmetic: Multiplication and division 130
6.6 Floating point; IEEE 754 . 133
6.7 Advanced calculations . 139

7 Information and memory . 145
7.1 (Quantifying) Information . 146
7.2 Information sizes . 151
7.3 External memory . 151
7.4 Internal memory . 160
7.5 Software aspects of memory 161

7.5.1 Heap and stack . 164
7.5.2 Garbage collection, paging, and overlays 166
7.5.3 Addressing modes . 168

8 Hardware/software aspects . 171
8.1 Interrupts . 172
8.2 Bus . 174
8.3 Communication . 176

9 Architecture of MIPS . 179

10 MARS: MIPS Assembly language implementation 185
10.1 Input/output (system calls) and memory access 188
10.2 Arithmetic . 194
10.3 Jump and branch; (goto, if . . . then goto) 196
10.4 Loops; (for, while, do-while) 201
10.5 Masking . 203
10.6 Arrays and structures . 206
10.7 Floating point . 211
10.8 Functions and the stack . 217
10.9 Macros (pseudo-instructions) 224
10.10Extensive example: Gauss method for solving equations . . . 227
10.11Calculating blockchain . 237

CONTENTS v

10.12RARS: Evolution of MARS 239

11 Examples of architectures . 251
11.1 Difference Engine of Charles Babbage 252
11.2 Intel 4004 . 253
11.3 MOS 65xx . 257
11.4 Atmel AVR . 266
11.5 Intel x86 . 272
11.6 Advanced architectures: Quantum computing and asynchronous

(clockless) computing . 282

A Intel 4004 instruction set . 289

B MOS 65xx instruction set . 291

C AVR Atmel instruction set . 295

D x86 instruction set . 299

E x86 BIOS, MS-DOS and API and Linux interrupts 303

F Linux (Debian) system calls 305

G MIPS instruction set . 307

H MARS (MIPS) Assembler directives 317

I (MARS) MIPS system calls 319

J (RARS) RISC-V base integer instruction set (RV32I) . . . 321

K (RARS) RISC-V system calls 331

L ASCII . 333

i Index . 335

1| Introduction

Where does the word computer come from? In spite of what we may think,
that it is a very modern word, it actually comes from the 17th century. It
derives from the word ’compute’ which is from the Latin for ’reckon with’
(from the prefix com- and the verb putare meaning to reckon). The word
architecture is then derived from the Greek archi + tekton, a builder or
craftsman. Computer Architecture is then described as ”A fundamental
underlying design of computer hardware, software, or both”. Indeed, that is
what we will describe here in this book. The design of a computer hardware
and software and the interplay between them. It has three basic parts:
Digital systems, computer hardware, and assembly programming.

This book is part of a course of Computer Architecture at the first year of
a university. It ranges from the number system and then goes from hardware
all the way up to programming it in machine language and finally assem-
bly. To start with this point, assembly: While mainly talking about general
concepts, explains a specific assembly language designed for a specific archi-
tecture, namely MIPS, which for didactic purposes is perfect in that it is a
RISC-type architecture (reduced instruction set computer) which thus has
a limited amount of instructions. Less is more, because we learn how to see
the computer as a machine that constantly shoves information around, like
a train engineer shunting wagons in a railway depot.

But where does all this fit in? In the great hierarchy of knowledge. Up
front it has to be said that it is assumed here that the reader is comfort-
able with high-level programming languages. Specifically, for the part on
Assembly it is assumed that the reader knows the basic concepts of the C
programming language, such as:

• Data types

• Variables and constants

• Comment

• Input/output (printf, scanf)

1

2 CHAPTER 1. INTRODUCTION

• Branching: If, if-else and switch; conditional execution

• Loops: for, while, do-while

• Arrays and structures

• Functions (and recursivity)

• Passing by value and passing by reference

• Pointers

Especially the last item — pointers — is very important because basically
everything in Assembly is pointers, as we will see. We will also see that
nearly all concepts of the list above are not part of Assembly. There are no
functions. There are no arrays and structures. Variables do not exist. No
looping instructions exist. These are all concepts of the level above, high-
level programming languages. In the level below, all these concepts have
to be implemented by us ourselves, but we will see that MIPS Assembly
is already prepared to implement these concepts and we will learn how to
implement them one by one. We will conclude that the link between C and
assembly is quite strong. One can even say that, in a way, C is Assembly
with macros.

Now the main question is, why should we want to learn to write pro-
grams in Assembly, if we already know how to program in a higher-level
programming language?

1. Understanding the level below makes us write code in the level above
better. For example, if we know from Assembly that divisions are
slower compared to multiplications, we might want to replace a C
instruction a = b/5.0 by a = 0.2*b. Or instead of a = 2*b we could
use a = b+b, since multiplications are very slow compared to additions.

2. In cases where hardware is limited, we are forced to optimize the code
to increase efficiency of using memory space and computing time. This
means going to the low level of Assembly.

3. In case no high-level compiler exists for an architecture from C to
machine language we have to write it ourselves, in which case the
knowledge of Assembly is essential.

If you want to jump to the ’goodies’, because you came here only to
learn how to program in Assembly, you can directly jump to Chapter 10.
But the thing I want to address now is: where does this all fit in? That is,
in our knowledge of the universe and in the way we think in general? And
how exactly did we wind up programming in Assembly and what will we do
with this knowledge? In this chapter some background will be given about

3

computing and how it fits in the layers of knowledge of a university course
of Informatics (information processing).

One thing is the information itself, the ideas we are going to process
with our hardware. The hard facts — numbers — that we will process
to come up with processed information. Maybe the temperature data of
the planet processed to come up with a prediction what weather it will be
tomorrow. Or maybe an analysis of the stock market to see if we can discern
a pattern. This being only monitoring the world, maybe we actually want
to use the computer to control the world in things as simple as maintaining
the temperature inside a car at a desired value. As we will see in Chapter
2, these ’data’ (the numbers) only exist in our heads. What exists in reality
is the hardware state, described by electronic properties such as voltages,
currents, and charges. The link between the two, the state of the hardware
and its behavior on the one hand and the interpretation of that state by
concepts in our head, is the realm of Computer Architecture. A gate has 5
volt at its output port, which we interpret as ’true’ or ’1’, etc. The hardware
seems to follow the logic in our head. In fact, the hardware is designed to
implement the logic we have in our head. A well-designed architecture can
efficiently and rapidly process the information in the way we imagined it.

The other thing is the hardware, the physical object that processes our
information. The first observation is that it is a so-called finite-state ma-
chine, meaning that it can be in one of a limited number of states. This
number of states is large, but finite. To give you an idea: a computer with
1 GB of memory has 28000000000 different possible states. Large, but not
infinite. The finiteness limitation is especially felt for smaller memory units.
The contents of a memory cell or a register in MIPS is 32 bits and this
has only 232 different possible states (about 4 billion). This is especially
felt when doing floating-point calculations. Whereas in integer calculations
(Z) the limitations of our computer being a finite-state machine are to a
certain point rather irrelevant and only limit the range of calculations, for
floating-point calculations these limitations are severe and we have to keep
them in mind. A single ’float’ of 32 bits can take only 232 different values,
there where the number of real numbers (R) is infinite, even if we were to
limit the range of the numbers, for instance only between 0 and 1.

While not inherently necessary, modern computers are all electronic.
This means that the state of the machine is defined in terms of electronic
properties. It has not always been like that. Imagine, the first automatic
processor, the Difference Engine of Charles Babbage in the beginning of
the 19th century, was a fully mechanical machine. However, since the 20th
century computers are electronic, first with vacuum tubes and later with
transistors and integrated circuits (of transistors). We will see primarily
such modern machines here.

We can thus place this entire thing in the knowledge tree of science.
Layers of knowledge of Informatics:

4 CHAPTER 1. INTRODUCTION

The starting layer is Physics. A short while after the Big Bang – so
the theory goes – particles were created that consisted of quarks that later
condensed into electrons, protons and neutrons. Especially the electrons
interest us here. They are charged particles and can thus be manipulated
by electrical fields. At this layer of knowledge we speak of Particle Physics,
which is not very relevant for an Informatics engineer, but also about the
Maxwell Equations, which govern the behavior of the charged particles. And
then especially the electrons, which interest us here foremost. While, in
principle, we can also make computers using the positively-charged particles,
the protons, this is less convenient because protons are about three orders
of magnitude heavier than the negatively-charged electrons and ’protonics’
is thus expected to be significantly slower than ’electronics’. This layer of
knowledge is the realm of Electronic engineers (and physicists alike), but of
somewhat less interest for the Informatics engineer.

The next layer of knowledge is Electronics. Here we learn concepts of
’current’ (which is the movement of charge; how much charge — coulomb
— passes a cross-section in space per second) and ’voltage’ (which is the
amount of potential energy that is stored in a coulomb of charge). We now
start suffering here from the most-irritating error ever made by a scientist,
namely attributing a negative charge to the electron instead of a positive
one. This is so annoying that we always have to imagine that if we have a
current from A to B, we have, in fact, a flow of electrons from B to A. That
is, if we still want to have some link to the layer of Physics. Most Electronic
engineers prefer to make a level of abstraction and just talk about current
as if it were a mere mathematical property, forgetting that currents consist
of moving electrons. It is possible to get away with this approach, and such
abstraction of ignoring underlying levels of knowledge is quite common, as
we will see. Electronic engineers now talk about Ohm’s law (R = V/I)
and power consumption (P = V 2/R) and the likes. Moreover, they talk
about capacitance (C = Q/V) and inductance (L = dI/V dt)*. We can call
this level ’linear electronics’ since all properties scale linearly: if the voltage
increases by a factor 2, the current will also increase by a factor 2, etc. See
Figure 1.

This brings us immediately to the next level. If linear electronics exist,
also non-linear electronics exist. Actually, here is where it starts getting
really interesting. A so-called diode does not have a linear current-voltage
relation, but an exponential behavior instead. The current grows exponen-
tially with the applied voltage (or the voltage grows logarithmically with the
applied current; for an Electronics engineer it is all the same). This is called

*R is resistance, V is voltage, Q is charge, I is current, C is capacitance, L = induc-
tance, t is time, and I = dQ/dt.

5

V

I

V

I

V

I

Figure 1: Linear electronics, non-linear electronics and digital electronics
(I-V curves).

the Ebers-Moll equation, named after two German scientists,

I = I0

[

exp

(

V

VT

)

− 1

]

.

Even more interesting is a transistor, which is a diode with a current-voltage
relation between A and B controlled by a third connection, C. The resistance
(and current) between A en B is thus controlled by a voltage placed at C,
and we thus have a trans-resistor, or ’transistor’ for short. An entire world
of electronics opened up by the invention of this non-linear behavior. While
vacuum tubes — the ’audion’ — of De Forest already had this behavior,
especially the miniaturization of the transistor made it popular. Signals
could be amplified and ’analog’ electronics in general surged, for instance
radios and televisions. In all these systems the signals are analog in that
any value between the supply voltages can exist.

For the Informatics engineers the real fun starts with highly non-linear
electronics. By combining transistors in certain ways, circuits can be made
that are amplifying so much that basically only two (saturation) states can
exist, because the voltages at the output can never exceed the supply volt-
ages (see Figure 1). We can call this ’binary’ or ’digital electronics’. We
enter the realm of modern Informatics, because we can assign logical val-
ues to these two states and process information in a binary, digital way.
Moreover, the digital processing of information begins here, because we can
make circuits (logic gates) that have two inputs and one output, the out-
put depends on the logical states of the two inputs. We can imagine here
OR-gates, NOR-gates, AND-gates, XOR-gates and NAND-gates. Most uni-
versity courses offer lectures in digital systems, or digital electronics, that
treat such systems from the electronics point of view or from the logical
point of view. The latter deals with things such as Karnaugh maps to im-
plement any logic based on simple gates, while the former talks about things
like CMOS (complementary [channel-type] metal-oxide-semiconductor tran-
sistors) to find the most power-efficient implementation of the desired basic
logic functions. We see here that this level of knowledge is mixed. It is
where Electronic engineers meet with Informatics engineers and they talk
about functionality and electronic implementation of that functionality.

6 CHAPTER 1. INTRODUCTION

A B F
A

L
S
E

A
A

N
D

B

A
A

N
D

N
O

T
B

A B
A

N
D

N
O

T
A

B A
X

O
R

B

A
O

R
B

A
N

O
R

B

A
E

Q
U

A
L

B

N
O

T
B

B
IM

P
A

N
O

T
A

A
IM

P
B

A
N

A
N

D
B

T
R

U
E

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

* * * * *

Figure 2: The 16 possible 2-input 1-output logic gates (IMP means material
implication). Symols for the six fundamental gates. The one-input-one-
output inverter (NOT) gate and the five basic two-input-one-output logic
gates (AND, OR, NAND, NOR, XOR).

With two input lines and one output line, there are exactly 16 possible
logic circuits. Some of them are silly, because they do not depend on any of
the inputs (the output always being the logic state ’false’ or always the logic
state ’true’), or on only one input (copying it, or inverting it), and some of
them are redundant (that is, since any functionality can be implemented by,
for instance, only NANDs, some gates are redundant). That leaves basically
the five logic circuits mentioned above: AND, NAND, OR, NOR, XOR.
They are shown in bold and marked with an asterisk in Figure 2.

Note that the names of the devices are what we, humans, give them to
somehow make sense out of their behavior. An AND-gate, for example, is
named as such because if we assume a high voltage is ’true’ (written down
as ’1’ here) and applied at both entrances then, and only then, the output
voltage is high, meaning ’true’ or ’1’. We’ll get back to this distinction about
physical level and logic abstraction later in the coming chapters.

Combining more transistors allows for the implementation of more ad-
vanced functionality such as flip-flops (memories), latches, clocks, etc. And
also advanced processing circuits such as ALUs (arithmetic and logic units)
and even CPUs (central processing units). I would like to refer the reader
here to the book of Tanenbaum, Structured Computer Organization, where
the architecture of computers is very well described.

7

With increased complexity of the functionality more and more transistors
are needed. Miniaturization of the transistors made it possible to pack ever
more transistors per square centimeter; we all know the famous Moore’s law
— named after Gordon Moore — that predicts that the number of transistors
per area doubles every 2 years, a speed of innovation that is still going on in
2021. We have reached a level of integration that is some tens of billions of
transistors on a single ’chip’. Some very powerful circuits can be built with
so many transistors and it no longer makes sense of talking about individual
gates, let alone transistors. We must make another level of abstraction if
we want to keep on understanding what is going on in our hardware. Here
is where our knowledge layer of Computer Architecture really starts kicking
in. A central processor has several input lines and output lines. It can be
imagined as a logic array where we have two sets of input data elements,
and one set of lines that define the functionality selected. We can recognize
here information as data and a ’program’, which consists of supplying a
combination of functionalities to actuate on the data.

In the first approach, in the early days, the program and data were
supplied to the processor in the form of logic states at the entrance of the
processor, for instance mechanical switches supplying voltages ’high’ and
’low’. We can represent such programs symbolically by 0s and 1s. The
work of an engineer was to translate desired functionality into a set of 0s
and 1s to be supplied to the machine. We call such programs therefore
’machine language’. A program for calculating the product of two floating
point numbers might be
0100011000000001

0001000011000000

Of course, this is hardly legible to the engineer and mistakes must have
been quite frequent. One engineer must have coined the idea that doing
such repetitive work — it often consisted of doing the same translations of
a human-readable logic program to a machine readable machine language
— might actually be done by the machine itself. (Take that for a machine
making machines). While at first the idea was considered ludicrous — ”Why
having the machine do something that can perfectly be done by a human
being?!” — the paradigm of computing must have shifted from doing as little
as possible by the computer to doing as much as possible by the computer.
In the 21st century we say, ”Why have a human doing work that can perfectly
be done by a computer?!” The idea of a ’compiler’ or ’translator’ was born.
The machine running a program (written in machine language, of course)
was fed human-readable ’code’ that was translated into machine-readable
machine-language code and then ran.

The first versions of these meta-languages were still rather close to the
machine language and only mnemonics were used for the ’instructions’ (func-
tionalities selected). So, the machine code for adding two registers ’01110111’
was written as add, or something like that. This type of programming

8 CHAPTER 1. INTRODUCTION

is called second-generation programming languages, or (macro) ’assembly’,
exactly the layer of knowledge included in this book. It is a level of pro-
gramming quite close to the hardware level. (There can also be a level of
programming inside the ALU and the control logic, which is called micro-
assembly, which will not be covered by this book).

Of course, the hierarchy of Informatics does not stop here, but at this
point it is nice to take a look back at where we have arrived. Basically, by
writing the code ’add’, etc., we control the flow of electrons in our processor.
Of course, in no way is it necessary for an Informatics engineer to know that
electrons are flowing in the processor. The only thing an engineer needs to
know is the functionality of the machine and not how it is implemented. An
Electronics engineer needs to know about what is going to be done with the
electronics, as well as knowing how to implement it in the Physics layer. A
Physics graduate is basically just doing philosophy and could not care less
what is being done with the knowledge acquired. No scientist — that would
be J. J. Thomson — ever thought, ”Let me discover the electron, so that we
can add two numbers fast”.

The engineers soon must have discovered that very often the same func-
tionality was implemented in this assembly. It was always things like for-
loops, or if-then-else structures. People must have started writing programs
in meta-assembly, nearly English. Programs were designed by the well known
fluxograms, then written down in English, as in something like
for (i=0; i<10; i++){

if (i % 2 == 0)

printf("even");

else

printf("odd");

}

which would then be translated by an engineer into Assembly and fed to
the computer. Well, they must have thought, if Assembly can be translated
into machine-language by the machine, why not let the machine translate
the near-English-source code directly?! This created the so-called third-
generation programming languages, of which FORTRAN (Formula Trans-
lator), BASIC (Beginners All-Purpose Symbolic Instruction Code), Pascal
(named after French Mathematician Blaise Pascal), FORTH (supposed to
have been a FOuRTH generation language; at the time commands could
only be five letters), and C are the most famous. This is normally the start-
ing level in Informatics of the engineer and scientist alike. It is well possible
to never look back at the levels below, but learning assembly is useful for
the reasons given earlier.

After having learned high-level ’imperative’ programming, students then
normally go on and learn to write in object-oriented languages such as C++,
Delphi, or Java. Obviously, this now falls way outside the realm of Computer
Architecture and the subject of this book. Even more distanced are the sub-

9

jects of applications such as writing in ’frameworks’, where several different
programming languages can be joined. As an example may serve Android
Studio, that combines writing in Java, HTML (XML) and Javascript all in
one IDE (integrated development environment). But don’t forget that when
you are connecting to Facebook on your mobile telephone, that it is all based
on object-oriented programming, that is based on third-level programming
languages, that are based on assembly, that is based on machine language,
that is based on integrated logic circuits, that is based on non-linear elec-
tronics, that is based on electronics, that is based on physics. At the end, it
is all because of the Big Bang. So the story goes.

2| Number systems

We all use number systems in daily life. The most famous in modern world
is the one based on the number 10, the so-called decimal system. The first
myth is that this is a very adequate number, because it is nice ’round’.
However, note that any number, when expressed in that base is written as
10. For example, in the binary system (base 2), 2 is written as . . . 10.

The second myth is that 10 is good for a base system because we have
ten fingers. Well, if the number of fingers were to determine what number
system to use, it would be 6 or 11. To show why this is: Imagine each hand
shows a digit, for instance your left hand shows the units and your right
hand the multitudes of 6. You can start counting: decimal=RL (right hand,
left hand):

1=01, 2=02, 3=03, 4=04, 5=05, 6=10, 7=11, 8=12, 9=13, 10=14,
11=15, 12=20, 13=21 . . .

and so forth. This is very convenient. A base-6 hexal number system works
very well when communicating with your hands, see Figure 3 for an example
of how to represent 27 (base 10) with our hands (base 6). So: five fingers
per hand implies that base-six is ideal. Probably for this reason the base-
6 number system survived for a long time, with England being the most
famous case, since most people in the world have two hands with five fingers
each.

In some cultures also a system of tallying with hands is used that can
count up to 12 (or 24). Take your right right and count with your thumb
placed on the top phalanx of your little finger (1), then on its middle phalanx
(2), then on its bottom phalanx (3). Then continue on the top phalanx of
the ring finger (4), etc., until you reach the bottom phalanx of your index
finger (12). You can now repeat the process on your left hand (from 13 to
24). While not good for counting, it is very useful for tallying and it does
not need any external hardware.

The disadvantage of low-number bases such as the hexal system is that
numbers get large faster. That is, they rapidly start having many digits.
To give an example, nearly 1 million (999 999) in the decimal system has 6

11

12 CHAPTER 2. NUMBER SYSTEMS

Figure 3: An example of the hexal (base 6) number system with counting
on our hands. One hand is used for the units and the other hand for the
multiples of the base number 6.

1 2 12

Figure 4: Tallying with the 12 phalanxes of the four fingers of your hand,
selected by the thumb. Here shown the numbers 1, 2 and 12.

digits while in the hexal system it has 8 (33 233 343).

Other number systems that were popular were base-20. This unit is
called a ’score’ in English. Take for example this funny Limerick (author
unknown):

A Dozen, A Gross, And A Score,
Plus Three Times The Square Root Of Four,
Divided By Seven,
Plus Five Times Eleven,
Equals Nine Squared Plus Zero, No More.

(A dozen is 12, a gross is a dozen dozens, 12 × 12 = 144). Some languages
still remind us of this score-based system. French speak of quatre vingts for
eighty, giving a calculation in the number 80 = 4× 20. Likewise, the Danes
talk of tres and firs to indicate sixty (= 3 × 20) and eighty (= 4 × 20),
respectively. Confusingly, other Danish numbers are based on the decimal
system: tyve (20), tredive (30), fyrre (40). And halvtreds does not mean half
tres (60/2=30), but halfway 40 and 60, thus 50. Are you still following it?
Well, the Danes seem capable of seeing the logic.

13

Figure 5: The number system of the Mayas based on scores (20). Their
unit was represented by a dot, with five of them written as a horizontal
bar. The numbers 0 to 19 are shown here. Subsequent digits were stacked
vertically on top of each other. An example is the number 829 (= 2× 202+
1× 201 + 9× 200) would be written as two dots above one dot above four
dots and a bar. Curiously, they also had a symbol for the number zero,
probably because the stacking method requires it.

Interestingly, also the Mayas used this system of scores, see Figure 5. A
unit was represented by a dot and five dots was written as a horizontal bar.
Subsequent units, multiples of the base number 20, were stacked on top. In
this way, the number 829 (= 2× 202+1× 201+9× 200), for example, would
be written as two dots above one dot above four dots and a bar. Note that
they also had a symbol for zero, which was needed by their stacking method.
How else could one distinguish between 801 (two dots on top of a dot) and
41 (two dots on top of a dot)?

Now, for all you conspiracy thinkers — those that believe in aliens — the
question arises how two distinctly separated civilizations (the Mayas and the
Danes), that had no contact with each other (since they were separated by
the Atlantic Ocean), both seemingly independently decided on 20 for their
number system? The answer is that the 20-base is a very natural outcome
if you want to do calculations, because it is a number that is divisible by 2,
4, 5 and 10.

The best system was then probably invented by the Babylonians. They
used a combination of base 10 and base 6, and this makes it divisible by
1, 2, 3, 4, 5, 6, 10, 12, 15, 20, and 30. That is especially useful when
doing divisions with results after the floating point, or with a remainder as
we learned in primary school. Compare for example the difficulty of our

14 CHAPTER 2. NUMBER SYSTEMS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Figure 6: The Babylonian number system based on 10 and 6. A zero
was represented by a space, some place without any symbol. (Source:
Wikipedia).

decimal system to write out 1/3. It gives a result with an infinite number of
digits, 0.3333. . . (= 3/10 + 3/102 + 3/103 . . .). While for the Babylonians,
1/3 is simply 20/60, or a single digit ’20’ after the floating point.

Note that our geometry and timing are still done in the Babylonian num-
ber system. Especially here you can see the power of this number system.
A full 360o circle can be divided into 2 angles of 180o, 3 angles of 120o, 4
angles of 90o, 5 angles of 72o, 6 angles of 60o, 8 angles of 45o, 9 angles of
40o, 10 angles of 36o, 12 angles of 30o, 15 angles of 24o, 18 angles of 20o, 20
angles of 18o, 24 angles of 15o, 36 angles of 10o, 40 angles of 9o, 45 angles
of 8o, 60 angles of 6o, 72 angles of 5o, 90 angles of 4o, 120 angles of 3o, 180
angles of 2o, and 360 angles of 1o.

Maybe the worst number system was invented by the Romans. (Makes
you wonder how they could be so crafty and build bridges and roads every-
where). The problem with their system is that it does not have a unique
base number, nor does it follow the method of ordering the significance of
the digits, as for instance is done by the Mayas (highest significant digit on
top) or by modern counting (most-significant digit on the left). The Romans
had mixed significance, as we all know. Placing a small unit before a large
unit puts a negative weight on it. Where ’I’ indicates 1 and ’C’ stands for
100 (clearly bigger), 99 is represented by placing the I before the C and 101
by placing the I after C. Moreover, the concept of digits (units multiplied
with a base raised to some power) does not even exist. It creates a system
where the same number can be represented in more than one way. As an
example, 99 can also be written as XCIX, which is −10+100−1+10. Digits

15

in Roman are:

I: 1
V: 5
X: 10
L: 50
C: 100
D: 500
M: 1000

Examples:

2018 = MMXVIII = 1000 + 1000 + 10 + 5 + 1 + 1 + 1
2019 = MMXIX = 1000 + 1000 + 10 − 1 + 10

This Roman system we had better forget as soon as possible. Instead, more
useful are standard sign-magnitude number systems:

• Digits have weight. The most-significant digit is on the utmost left,
the least significant digit on the utmost right.

• Each step to the left has a weight that is increased by the base number
and each step to the right the weight is reduced by a factor equal to
the base number.

• Negative numbers are indicated by a preceding ’−’ sign. Positive num-
bers can (but don’t have to) be preceded by a ’+’ sign. Alternatively,
numbers can be limited to positive, unsigned, values only.

This is all a matter of conventions, and at school these conventions are
hammered into our heads in such a way that we think it is the only way to
do things. Maybe you did not even think it was possible to have a binary
system until you were in secondary school. Or any base-number system. In
any case, the most common convention is one in which the position of the
number determines its weight, as presented above. As an example, if the
number base is x, then the number represented by

±abcdex

is

±(a× x4 + b× x3 + c× x2 + d× x1 + e× x0).

For example, 123456 = 1× 64 +2× 63 +3× 62 +4× 61 +5× 60 = 186510 =
0 × 104 + 1 × 103 + 8 × 102 + 6 × 101 + 5 × 100, where the convention was
used to write the base as a subscript. In modern times the most-often used
convention is base-10 for humans and base-2 (binary) for computers. Let’s
analyze the latter in detail now.

16 CHAPTER 2. NUMBER SYSTEMS

2.1 Binary numbers

”There are 10 types of people:
Those that know binary and those that don’t!”

The most important of all number systems for informatics is base-2, simply
called ’binary’. That is because the underlying hardware works with binary-
state electronics. Any output of any gate can be either low or high. Any
capacitor is either full or empty. It does not matter at this moment which
one we will ascribe to the logic (sic) ’1’ and which one to a logic ’0’. Now, if
we have a set of transistor circuits, each in a certain state designated by ’1’
or ’0’, we can imagine that they represent a binary number. The number
does not really exist in the computer!

Now, this needs some explanation. How can it be that numbers do not
exist in the computer? Well, it can be said even stronger: numbers do
not exist in the world! They only exist in our heads. They are part of
mathematical — that is, imaginary — worlds. The only things that exist
in reality are things that are in the realm of Physics, and all physical things
can be expressed in terms of the seven basic SI units (kilogram, meter,
second, ampere, mol, candela, kelvin) or their derivatives. If it does not
have a unit in SI it does not exist. Do not confuse a number with a quantity
which has unit ’mol’. If there are two people in the room, in fact there
are 2.0/NA mol people in the room, with NA the number of Avogadro,
NA = 6.022× 1023/mol.

Likewise, if we have a number (binary or hexadecimal, or whatever) in
a computer, what we in fact have is merely a set of gate states (as in high
voltage or low voltage; the unit V = kg·m2·s−3·A−1) that we can – in our
heads! – represent with a number. To show why this makes sense: the same
combination of gate states, for instance a 32-bit register, can simultaneously
be thought of as a binary number, a decimal integer, an ASCII character,
or a single-precision floating point number, depending on the interpretation

of the bit pattern.
The reason why it is useful to do this abstraction is that, if we assume

these to represent numbers, the logic of the hardware (ALU, arithmetic and
logic unit) follows exactly the logic we have in our heads of how it should
behave if they are numbers. The behavior of our computer is consistent
with the model in our heads. We are thus able to think as a computer, or
a computer ’thinks’ the same way we do. The computer implements our
thinking, and does it, in contrast to us, flawlessly and rapidly.

Returning to the subject, binary numbers are very useful in informat-
ics because the gates work with two possible states. Note that it is not
obligatory for computers to use this technology. Russians are famous for
having developed ternary-logic computers based on gates that have three

2.1. BINARY NUMBERS 17

possible states, and trits instead of the more common binary logic (two pos-
sible states, bits). Apparently, it had some advantages, such as lower power
consumption and lower production cost (this according to Wikipedia). Ob-
viously, for such computers, it makes much more sense to represent the infor-
mation as ternary numbers. However, this technology has died out and we
will no longer refer to it here. Rests to say that all logic and all computation
could also theoretically be done in ternary-gate electronic computers.

What we have to remember, however, at this point is that there is a
symbolic link between a physical set of gate states, the binary representation,
and the non-binary interpretation of what information is, in fact, stored
there. For example, for a 4-bit gate output we might have the following
representations:

Physical levels:
5 volt, 0 volt, 5 volt, 5 volt

Boolean logic levels (assuming false is low voltage, true is high volt-
age):

true, false, true, true
Binary logic levels (assuming ’0’ is low voltage, ’1’ is high voltage):

’1’, ’0’, ’1’, ’1’
Binary value (assuming 0 is ’0’ and 1 is ’1’):

1011
Decimal value (assuming binary value is unsigned int with MSB left):

11
Hexadecimal value (idem):

B
With only the first (physical) level really existing and the other just figments
of our imagination. Note that it is here assumed that high voltage = true =
’1’ = 1. In any step this assumption can be different, as in, for instance, high
voltage = ’false’. As long as the behavior of the hardware is consistent with
the symbolic translation, it is correct. An AND-gate should have a physical
behavior that is consistent with the truth table of the logic-AND function,
whatever the physical states are.

An important observation to make here: A combination of n binary gates
— or n ’bits’ — can take N = 2n different possible ’values’ or output combi-
nations. Reasoning the other way around: we need at least n = log2(N) bits
(gates) to represent a number that has N possible values. So, for instance,
with 3 bits we can ’store’ integer numbers from 0 to 7. (Or from 27 to 34, if
we’d want that). Reasoning the other way around, to store the 26 letters of
the English alphabet, we need at least log2(26) = 4.7 bits. That is, 5 bits,
since partial bits do not exist.

An 8 bit register or memory address can thus store 28 = 256 different
values. If they are unsigned integers including zero, they’d span from 0 to
255. If we represent them in binary, the rightmost bit, the least-significant
bit (LSB) has weight 20 = 1 and the leftmost bit, the most-significant bit

18 CHAPTER 2. NUMBER SYSTEMS

Table I: Look-up table for binary, hexadecimal, octal and BCD.

Decimal Binary Hexadecimal Octal BCD
0b 0d 0x 0o
0 0000 0 0 0
1 0001 1 1 1
2 0010 2 2 2
3 0011 3 3 3
4 0100 4 4 4
5 0101 5 5 5
6 0110 6 6 6
7 0111 7 7 7
8 1000 8 10 8
9 1001 9 11 9
10 1010 A 12 -
11 1011 B 13 -
12 1100 C 14 -
13 1101 D 15 -
14 1110 E 16 -
15 1111 F 17 -

(MSB) has weight 27 = 128. Likewise, 32-bit registers store integer numbers
ranging from 0 to 4,294,967,295. As an example for a 4-bit unsigned integer:

1101 = 1× 23 + 1× 22 + 0× 21 + 1× 20 = 8 + 4 + 0 + 1 = 13.

2.2 Octal, hexadecimal and binary-coded dec-

imal

The hexadecimal number system is very often used in informatics. It is
ubiquitous for a very simple reason already mentioned above: it is simply
joining 4 binary bits and attributing a symbol to it. This for a very simple
and unique reason: to save space. Hexadecimal is simply shorthand binary.
So, we have the simple look-up table as in Table I.

In this table, the A does not represent the letter A of the English al-
phabet, but rather the bit combination 1010 written in hexadecimal. (As
we will see in a moment, the letter ’A’ in the English alphabet is coded in
ASCII in a different way). To indicate that we are dealing with hexadeci-
mal, instead of writing the 16 subscript after the number (something that
is difficult to do in ASCII texts), the number is often preceded by ’zero-x’,

2.3. ARITHMETIC 19

0x, as in 0x1AC3, which is 1× 163 + 10× 162 + 12× 16 + 3 = 685110. This
can also be written as 0d6851, which is the exact same thing. With the
same convention, binary numbers are often preceded by 0b, although less
frequently used in writing code. Even less used are 0o for octal and 0d for
decimal. The 0d is redundant, since decimal is considered default.

To convert hexadecimal to and from binary is very easy. As the table
shows, every hexadecimal digit is equivalent to four binary digits. Thus we
can write out hexadecimal by replacing every digit by its corresponding 4-
bit equivalent. Likewise, binary numbers are converted to hexadecimal by
grouping the binary digits in sets of 4 bits and looking up in the table what
hexadecimal digits they are. An example: 0xA3 is 1010 0011 in binary. And
0b1001 1101 0100 0001 is 0x9D41.

The same trick we can also use for octal numbers. A single octal digit is
converted to three binary digits, ranging from 000 (octal 0o0) to 111 (octal
0o7). An example, 3758 (0o375) becomes 011 111 101. Converting to octal
is done by grouping in sets of three bits (with optional adding of zeros in
front if needed), and looking in the table. As an example, 0b11101001 is
converted into 0o351.

The table also shows binary-coded decimal (BCD), which is similar to
hexadecimal with the last combinations not used. However, a computer
calculating in BCD is not the same as a computer calculating in binary
(and thus hexadecimal). As an example, in BCD, 07+07 = 14: or 0000
0111 + 0000 0111 = 0001 0100, while in binary or hex it is 00000111 +
00000111 = 00001110, or 0x07 + 0x07 = 0x0E. As can easily be shown,
binary calculations are more efficient in computers but are further away
from human thinking, and this is the reason why earlier architectures often
use decimal or binary-coded decimal.

2.3 Arithmetic

This part may seem a little odd. To talk about how to do arithmetic in
the decimal system, while this is exactly what we have already learned very
well in primary school. But, in spite of us having learned it well, perhaps
we did not realize what the underlying method was. What algorithm we
used for arithmetic? More specifically for adding, subtracting, multiplying
and dividing. We will see that these algorithms can be used in any number
system, including binary. They are based on us memorizing (burning in our
hardware, our minds) some simple tables and executing simple operations.
We make here one simplification in that we use only two-operand arithmetic
(although we have learned to do multi-operand additions A+B+C+. . . in
school).

Let’s start with addition, Z = A+B. We perform additions of multi-digit
numbers by doing addition one digit at a time. As an example, adding 714

20 CHAPTER 2. NUMBER SYSTEMS

adder

sum

carryc

A B

adder

sum0

0

A0B0

adder

sum1

A1B1

adder

sum2

A2B2

adder

sum3

A3B3

adder

sum4

A4B4

adder

sum5

A5B5

digit0 digit1 digit2 digit3 digit4 digit5

a) b)

Figure 7: a) A single-digit adder implementing a table such as the one
shown in Table II and Table IV for decimal and binary. b) How this hardware
can perform a multi-digit addition.

to 888: We start with the least significant digits and add them. 8 plus 4
is 12. Houston, we got a problem, 12 is not a single digit and we have an
overflow. We have learned to deal with this by just keeping the last digit and
remembering the overflow digit ’1’, which we call a ’carry’. Now this carry
is then carried over to the next digit summation, which now is 8+1+carry
which gives 0 plus a new carry. We get this result from the very simple
memorized addition table (see Table II) that includes such carry-ins and
carry-outs. Our addition becomes (white spaces are considered 0)

1 1 1 0 carries
8 8 8 operand A
7 1 4 operand B +

1 6 0 2

Note that we start with the carry-in of the least significant digit always
equal to 0. Note also that the carry cannot be larger than 1 for bi-operand
additions. At most we can have an addition of 9+9+carry=19 which will
give 9 with a carry of 1 as output. This statement is valid for additions in
any number system.

When we design a computer, all we need is some hardware that somehow
has this addition table burned in and the algorithm programmed in. We
could of course also have burned in all possible sums of any integers A and
B up to a certain amount of digits, but that is becoming rapidly extensive
(and expensive) hardware. Moreover, it is not very flexible. Up to how many
digits are we going to burn it in hardware? Two? Three? A hundred? We
just prefer to do the simple table in hardware and the rest in the algorithm,
with some useful tricks here and there (see Table III).

Now let’s look at how additions work in binary calculations. The idea
is the same, but obviously the table is much simpler, see Table IV. An
example, adding 110 to 011 becomes

2.3. ARITHMETIC 21

Table II: Addition table for decimal numbers. As an example, adding 6
(row 6) to 6 with a carry ("c" in column 6) gives a sum of 3 with a carry
out (carry) equal to 1, shown in bold font.

0 c 1 c 2 c 3 c 4 c 5 c 6 c 7 c 8 c 9 c

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 0 sum
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 carry

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 0 0 1 sum
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 carry

2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 0 0 1 1 2 sum
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 carry

3 3 4 4 5 5 6 6 7 7 8 8 9 9 0 0 1 1 2 2 3 sum
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 carry

4 4 5 5 6 6 7 7 8 8 9 9 0 0 1 1 2 2 3 3 4 sum
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 carry

5 5 6 6 7 7 8 8 9 9 0 0 1 1 2 2 3 3 4 4 5 sum
0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 carry

6 6 7 7 8 8 9 9 0 0 1 1 2 2 3 3 4 4 5 5 6 sum
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 carry

7 7 8 8 9 9 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 sum
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 carry

8 8 9 9 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 sum
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 carry

9 9 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 sum
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 carry

1 0 0 carries
0 1 1 operand A
1 1 0 operand B +

1 0 0 1

The hardware can be much simpler since it needs to remember only 16 values
compared to 400 for the decimal adder.

❉

Subtractions can be done by a similar table, but with ’borrows’ instead
of carries. The reader is invited to design such tables. However, as we will
see, there is a much more elegant way of subtractions, and that is to convert
the subtraction into an addition of the negative number. As we will see, this
is easily done when we use two’s-complement representation of numbers, as
discussed later in this chapter. For this reason we postpone the discussion
of subtractions to a later stage, namely at the place where we design the
hardware (Chapter 6).

❉

22 CHAPTER 2. NUMBER SYSTEMS

Table III: Some simple calculation ’tricks’

• Multiplying by the base (always written as ’10’ in that base!) is simply
adding a zero at the end of the number. Example: 10 times 53 is 530.
We call this operation in computer jargon a ’left-shift’.

• A number which has a sum of digits divisible by 3 is divisible by 3.
Example: 7893 has a sum of digits 7+8+9+3 = 27, which has a sum
of digits 2+7 = 9, which is divisible by 3 and thus 7893 is divisible by
3 (meaning leaving no remainder when dividing by 3). Same trick is
for divisibility by 9. Moreover: Divisible by 2 if last digit is divisible
by 2. Divisible by 5 if last digit is 0 or 5.

• The square of a two-digit number ending with 0 is the square of the
first digit followed by ’00’: (D0)2 = D×D 00. Example: 402 = 16 00.
The square of a two-digit number ending with 5 is the product of
the first digit times the first digit plus one and added ’25’: (D5)2 =
D×(D+1) 25. Example: 452, knowing 4× 5 = 20, is 20 25. Generally,
a two-digit square (example 282 = 784) can be done in the following
way: 1) Add the last digit to the full number, e.g., 28 + 8 = 36. 2)
Multiply this number by the first digit and left-shift one case. E.g.,
2× 36 = 72 0. 3) Add the square of the last digit to this number, e.g.
720 + 64 = 784.

• 9×D = (D−1) (10−D). Example for D equal to 8: 9× 8 = 7 2.

Table IV: Addition table for binary numbers. As an example, adding 1 (row
1) to 0 with a carry ("c" in column 0) gives a sum of 0 with a carry out
(carry) equal to 1, shown in bold font.

0 c 1 c

0 0 1 1 0 sum
0 0 0 1 carry out

1 1 0 0 1 sum
0 1 1 1 carry out

2.3. ARITHMETIC 23

Table V: Multiplication table for decimal shown as digit pairs cp, with c
the carry and p the product of the operation.

× 0 1 2 3 4 5 6 7 8 9
00 00 00 00 00 00 00 00 00 00 00
01 00 01 02 03 04 05 06 07 08 09
02 00 02 04 06 08 10 12 14 16 18
03 00 03 06 09 12 15 18 21 24 27
04 00 04 08 12 16 20 24 28 32 36
05 00 05 10 15 20 25 30 35 40 45
06 00 06 12 18 24 30 36 42 48 54
07 00 07 14 21 28 35 42 49 56 63
08 00 08 16 24 32 40 48 56 64 72
09 00 09 18 27 36 45 54 63 72 81

Also for multiplications we use an algorithm of reducing it to single-digit
operations that are then looked up in a table. The basic bi-operand single-
digit multiplication information is shown in Table V. The product and carry
entries are here written in double-digit representations cp, with c the carry
and p the product of the operation. For example, 6 × 6 gives 36, meaning
the result is 6, with a carry of 3.

We can now perform a multi-digit bi-operand multiplication by per-
forming shift-multiply-add operations, a method that is called the Russian-
peasant algorithm. Take for example 238× 123. We first multiply each digit
of the first operand by the last digit (least significant digit, LSD) of the
second operand (3), 238× 3 which gives 714 as can easily be seen (note also
the carries): From our look-up table we know that 3 × 8 = 24 (4 plus 2 as
carry). Then the next step 3 × 3 = 9 plus the carry is 1 plus 1 as carry.
Then, the final step is 3× 2 is 6. Plus the carry from the previous step is 7.
Final result: 714. Remember how we did this in school (the unused digits
of operand B at every step put in brackets):

1 2 0 carries
2 3 8 operand A
(12)3 LSD operand B ×
7 1 4 intermediate result

Then we shift operand A to the left (multiplying effectively by the base 10;
adding a 0, thus 2380) and operand B to the right (dividing effectively by
the base 10, forgetting the remainder). So, the last digit of operand B is
now 2, so we multiply 2380 by 2, and then add the previous result to it:

24 CHAPTER 2. NUMBER SYSTEMS

Table VI: Multiplication table for binary. Note: Never a carry occurs.

× 0 1
0 0 0
1 0 1

0 1 0 0 carries
2 3 8 0 operand A

(1)2 LSD of operand B ×
4 7 6 0 new result

1 0 0 0 carries
4 7 6 0 new result

7 1 4 previous intermediate result +
5 4 7 4 new intermediate result

Once again shift operand A to the left and operand B to the right. So, the
last digit of operand B is now 1, so we multiply 23800 by 1, and then add
the previous result to it:

0 0 0 0 0 carries
2 3 8 0 0 operand A

1 LSD of operand B ×
2 3 8 0 0 new result

0 1 0 0 0 carries
2 3 8 0 0 new result

5 4 7 4 previous intermediate result +
2 9 2 7 4 final result

The next shift-right division-by-10 of operand B results in 0 and we have
finished our calculation. Final result: 29274.

In binary this algorithm is much simpler. The look-up table for binary
numbers is very simple, it can barely be called a table, the output is either
0, if operand B is 0, or equal to operand A if B is 1. There is never a
carry! See Table VI. This makes the Russian-peasant algorithm very easy;
shift-multiply-add becomes simply shift-add.

An example of a long multiplication by this algorithm in binary is shown
here below for multiplying A = 13 (1101) with B = 11 (1011). Note that if
the rightmost bit of operand B is 0, no addition has to be done, and if that
bit is 1, no multiplication has to be done, the operand A simply needs to be
added:

2.4. NUMBER CONVERSION 25

1 1 0 1 A
1 0 1 1 B. (LSB of B is 1: add A)
1 1 0 1 temporary result

1 1 0 1 0 L-shifted A, (R-shifted B=10 1: add A)
1 0 0 1 1 1 temporary result

1 1 0 1 0 L-shifted A, (R-shifted B=1 0: no action)
1 0 0 1 1 1 temporary result

1 1 0 1 0 0 0 L-shifted A, (R-shifted B=1: add A)
1 0 0 0 1 1 1 1 final result (14310)

No multiplication has to be done in binary. Just shift, mask (seeing if a digit
is 1) and add.

2.4 Number conversion

Now the question is, how to convert between number systems? The obvious
way is to do the counting in the destination number system. An example is
the one given above from hexal to decimal, 123456 = 1 × 64 + 2 × 63 + 3 ×
62 + 4× 61 + 5× 60 = 186510, with the right side of the equation a decimal
calculation. We are very familiar with calculations in decimal, which are
fundamentally based on the multiplication tables that were hammered into
us at an early age, see Table V. From the expression above it is clear that
also the powers n of the source base numbers x, expressed in the destination
number system, are useful, see Tables VII, VIII and IX for decimal, pental
and binary, respectively. In this case we will need the line with powers of 6
expressed in the decimal system. With this table we can see that 123456 is

1× 64 = 1,296

2× 63 = 432

3× 62 = 108

4× 61 = 24

5× 60 = 5 +

1,865

We can also do the calculations in the source system. It involves divisions
(compared to multiplications above). An example is the division of 123456
by 146 in the conversion of base-6 to base-10. In base 6:

12345/14 = 510 + 5/14 (remainder is 510)
510/14 = 30 + 10/14 (remainder is 610)
30/14 = 1 + 12/14 (remainder is 810)
1/14 = 0 + 1/14 (remainder is 110)

So the number in the decimal system – reading the remainders from the last
to the first – is 1865, which is equal to the result found before.

Considering our acquaintance with base-10 calculations, conversions from

base-10 to other bases are better done by the latter technique, while con-

26 CHAPTER 2. NUMBER SYSTEMS

Table VII: Some powers xn in the decimal system (base 10).

n→ 5 4 3 2 1 0
x ↓
2 32 16 8 4 2 1
3 243 81 27 9 3 1
4 1,024 256 64 16 4 1
5 3,125 625 125 25 5 1
6 7,776 1,296 216 36 6 1
7 16,807 2401 343 49 7 1
8 32,768 4,096 512 64 8 1
9 59,049 6,561 729 81 9 1
16 1,048,576 65,536 4,096 256 16 1

Table VIII: Multiplication table and some powers xn in the pental system
(base 5).

0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 11 13
3 0 3 11 14 22
4 0 4 13 22 31

n→ 10 4 3 2 1 0
x ↓ (= 510)
2 112 31 13 4 2 1
3 2244 311 102 14 3 1
4 13044 2011 224 31 4 1
11 (= 610) 222101 20141 1331 121 11 1
13 (= 810) 2022033 112341 4022 224 13 1
20 (= 1010) 11200000 310000 13000 400 20 1
31 (= 1610) 112341 2011 31 1

2.4. NUMBER CONVERSION 27

Table IX: Multiplication table and some powers xn in the binary system
(base 2).

0 1
0 0 0
1 0 1

n→ 101 100 11 10 1 0
x ↓
10 (= 210) 100000 10000 1000 100 10 1
11 (= 310) 11110011 1010001 11011 1001 11 1
100 (= 410) 100000000 1000000 10000 100 1

versions to base-10 are easier done with the former method. Especially,
conversions to base-2 are done by successive divisions by 2 (with the re-
mainders in reverse order the resulting bit pattern), and conversions from

base-2 are done by successive multiplications by 2 (or powers of 2) and ad-
dition. Conversions from base-x to base-y (with x and y both not 10) can
also be done by first converting base-x to base-10 and then from base-10 to
base y. In this way we make use of our familiarity with base-10 calculations.

Now let’s do a more complicated example, from hexal to pental. What is
12346 in base-5? We can use the multiplication table and power table from
the pental system, Table VIII. The first four powers of six (11) in base-5 are:
1, 11, 121, 1331. So we need to calculate 1× 1331+ 2× 121+ 3× 11+ 4× 1
in the pental system:

1 × 1331 = 1331

2 × 121 = 242

3 × 11 = 33

4 × 1 = 4 +
= 2220

In other words, the answer is 22205. Check (by converting both 12346 and
22205 to the decimal system, 31010) that this is indeed correct.

While floating point numbers will be treated in a separate section further
on, it should be noted here that conversions after the floating point are done
by the opposite operation. So, if we want to convert for instance 0.812510
to binary, we do successive multiplications by 2. If the number is larger or
equal to 1, we write a 1 (0 otherwise) and continue with the remainder after
the floating point. So

28 CHAPTER 2. NUMBER SYSTEMS

0.8125 × 2 = 1 + 0.625

0.625 × 2 = 1 + 0.25

0.25 × 2 = 0 + 0.5

0.5 × 2 = 1 + 0.0

and the number is 0.1101 in binary.
Note that in an arithmetic evaluation we can first do the conversion to

the new number system, then do the calculation, or first do the calculation
and then the conversion. The end result is the same. Even if we do not
realize it, this is the basis of computer calculations; they can be done in
binary and the result then presented in decimal.

Note also that numbers in the unary system (base 1) are possible. Just
as binary digits have two possibilities (0 and 1) and base-n digits in general
have n possibilities, base-1 digits have 1 possibility (0). The value of a
number is simply the number of 0s in the number. So 710 = 00000001. We
can no longer use the convention that adding 0s in front of a number does not
change its value, though, as it obviously does in the case of base-1 numbers.
Nor does floating point make any sense. Unary counting does, however,
make sense in payments based on things such as gold; note that every digit
in the number has the same weight, similar to the equality of every gold coin
in your pocket. It is a tallying system, not a counting system.

2.5 Negative numbers

So far so good. The complications start when we want to interpret the bit
patterns to include negative numbers as well and have the hardware capable
of dealing with them, that is, having the ALU perform gate operations that
are consistent with the formalism of the gate voltages representing numbers
that can be positive as well as negative. The problem is that the sign symbol
(+ or −), introduced by us before is not directly implemented in hardware,
as that has only 0s and 1s, conventionally. So we have to augment our
convention.

As a first thought, we may think of using — ’sacrificing’ — one bit for the
sign, and continuing to use rest for the magnitude (which now has a smaller
range, 0 unto 2n−1−1). This scheme is called sign-magnitude. See Figure 8a
for a three-bit example. Assuming the above binary combination is a sign-
magnitude representation of an integer number, with the MSB representing
the sign (0=’+’, 1=’−’), it would give:

1101 = −(1× 22 + 0× 21 + 1× 20)
= −(4 + 0 + 1) = −5

Note the peculiar property of sign magnitude that there are two numbers
zero, namely +0 (0000) and −0 (1000). More problematic is that we can

2.5. NEGATIVE NUMBERS 29

Figure 8: Three ways of representing signed numbers; 3-bit examples. a)
In sign-magnitude, the MSB is the sign bit, 0 for ’+’ and 1 for ’−’, while
the rest of the bits form a normal unsigned n−1-bit number. b) In ones’-
complement, to find a negative number, simply all bits are inverted. c) In
two’s-complement, the MSB has a negative weight −2n−1 while the other
bits have positive weight +2n−2 to +20.

no longer use the same hardware for these sign-magnitude numbers and the
unsigned integer numbers. As an example, imagine adding 1 to −2 using
hardware we learned from digital electronics classes:

bit unsigned sign-

pattern magnitude

0001 : 1 +1
1010 : 10 −2
1011 : 11 −3

The same problem we have in the alternative ones’-complement. In this
scheme, we just invert all the bits to get the negative number, see Figure
8b for a 3-bit example. Like in sign-magnitude, positive numbers start with
a 0 and negative numbers start with a 1. Moreover, also here we have two
possible ways to represent zero, namely +0 = 0000 (all 0s) and −0 = 1111
(all 1s). While the calculations at first sight seem to be going better, we
have this peculiar result that occurs whenever there is a carry:

bit unsigned ones’-

pattern complement

0011 : 3 +3
1110 : 14 −1
0001 : 1 +1

This can be solved by adding the carry that was ignored. Adding it will make
the final result +2, which is correct. However, we would like to use the same
hardware for unsigned integer operations and signed integer operations and

30 CHAPTER 2. NUMBER SYSTEMS

not have to resort to additional operations when adding signed integers. The
perfect solution for that is the two’s-complement representation of numbers.

Two’s-complement is formed by giving a negative weight −2n−1 to the
MSB, and positive weights +2n−2 to +20 to the other bits until the LSB.
See Figure 8c for a 3-bit example. The number −1 is thus formed by a
combination of all 1s. And this gives another way of rapidly looking at
things:

• If the first bit (MSB) is 0, treat the number as a normal unsigned
int, with every (other) bit its proper weight. Example, 00000100: The
positional weight of the only 1 is 4, therefore the number is +4.

• If the first bit (MSB) is 1, the number is equal to −1 plus every 0 (sic)
weighted by its positional weight negatively. Example, 11111011: The
positional weight of the only 0 is 4, therefore the number is −1− 4 =
−5.

This might come in handy sometimes when we want rapid answers. Espe-
cially for large bit numbers. (A 32-bit two’s-complement int,

11111111111111111111111111111011
is also −5).

Note that two’s-complement has only one version of zero. It can use the
same hardware logic as unsigned integers:

bit unsigned two’s-

pattern complement

0001 : 1 +1
1010 : 10 −6
1011 : 11 −5

Interestingly, the carry can be ignored (see Figure 8c). On the other hand, a
phenomenon occurs halfway the bit pattern, when the MSB changes 0→ 1,

bit unsigned two’s-

pattern complement

0111 : 7 +7
0001 : 1 +1
1000 : 8 −8

this effect is called ’overflow’, and similarly, ’underflow’ occurs when sub-
tracting numbers (or adding a negative number) resulting in a change of
MSB bit 1→ 0.

To find the 2’s-complement of a number we can use either of the two
following algorithms:

• Invert all bits and add 1. Example:

2.5. NEGATIVE NUMBERS 31

3 = 00000011
invert: 11111100
add 1: 11111101 =−3

• Starting from the right (LSB) simply copy until the first 1 encountered.
From then on, but excluding this one, invert all bits.

For a programmer it is not important to exactly know how this is imple-
mented in hardware. The only thing that matters for us is that signed integer
numbers in modern architectures are represented in two’s-complement. We
can consider the hardware itself as a black box. However, since this book
is not only about programming, we will see how binary calculations are
implemented in hardware.

For completeness sake, we can also see how sign-magnitude, (n − 1)s-
complement, and n’s-complement works in other base-n systems. For exam-
ple the decimal (base-10) system. In sign magnitude we just use the conven-
tion of adding a digit in front, a maximum digit (’9’ in this case) is negative
and a ’0’ is positive, so +123 in sign magnitude becomes 0123 and −123
becomes 9123. From this it is immediately clear that when communicating
numbers it is of utmost importance that both sides of the communication
use the same convention (protocol) or information will not be transmitted
correctly, people may easily confuse 9123 as nine thousand one hundred and
twenty three. When you communicate, you must speak the same language!

Continuing, in 9s-complement, to get the number with opposite sign, we
simply invert all digits (that is subtract all individual digits from 9). So the
positive number 0123 (that is +123 in all conventions) becomes −123 by
taking the 9s-complement of all digits: 9876. The 10’s-complement is found
by either taking the 9s-complement and adding one (9877) or by subtracting
the (floating point number) 0.123 from 10 (hence the name 10’s-complement)
and removing the floating point ’.’ part:

10.000

0.123

9(.)877

so the answer is 9877. Just like in 2’s-complement, also in 10’s-complement
are subtractions done by adding the 10’s-complement sign-inverted number.
An example, (+154)− (+138) = (+154) + (−138):

0154

9862

(1)0016

which is +16, where we have ignored the carry (as explained in Figure 8).
Or (+138)− (+154) = (+138) + (−154):

0138

9847

9985
and that is equal to −16 in 10’s-complement.

32 CHAPTER 2. NUMBER SYSTEMS

2.6 ASCII

Another way of interpreting bit patterns is by ASCII (American standard
code for information interchange). Or, to say it the other way around:
instead of storing in 8 bits a binary number, signed or unsigned, we can also
store there a letter of text. Simply by convention (!) we can attribute binary
patterns to letters of the English alphabet, for instance, 01000001 is equal to
the letter ’A’ and 01100001 to the letter ’a’. And it now becomes very clear
why we could make the statement that the numbers or the letters do not
exist in the computer, but only in our heads. Because, how could it otherwise
be that the exact same physical state of the computer, with 01000001 in a
memory address — describing the combination of output voltages or charge
states — contains the short unsigned byte 65 as well as the letter ’A’? This
is only possible if the physical states really exist and the interpretation of
these states — the numbers or letters — is only in our heads. The computer
follows our thoughts and when we process 7+7, the bit pattern for 14 comes
out:
00000111 = 7

00000111 = 7

======== +

00001110 = 14

That is to say, if we use the same hardware to process the ASCII characters
’7’ + ’7’ we get (see the ASCII table in Appendix L):
00110111 = ’7’

00110111 = ’7’

======== +

01101110 = ’n’

So, 7+7 = 14, while ’7’+’7’ = ’n’. The computer hardware does not care
what is in our heads and if it makes sense there or not! As the popular
saying goes, word processors are often WYSIWYG, ”what you see is what
you get”. Computer hardware is YWIYGI, ”you wanted it, you got it!”. You
asked for doing an add instruction with ASCII data and that’s what you
get. ”Anything else?”

2.7 Gray code

A seemingly strange way of representing binary numbers is by Gray code, as
shown in Table X. The advantage of this scheme is that adjacent numbers
only differ by one bit. This is important for some electronic applications,
when it should not be possible to jump to intermediate undetermined states
when switching. Imagine changing from 7 (0111) to 8 (1000) in which all four
bits commutate. In this case, depending on the order of changes of the bits,
which unlikely occur all at the same time, intermediate fake states may be

2.8. FLOATING POINT 33

Table X: 4-bit Gray code.

decimal Binary Gray code
0 0000 0000
1 0001 0001
2 0010 0011
3 0011 0010
4 0100 0110
5 0101 0111
6 0110 0101
7 0111 0100
8 1000 1100
9 1001 1101
10 1010 1111
11 1011 1110
12 1100 1010
13 1101 1011
14 1110 1001
15 1111 1000

introduced, for instance from 7 to 8: 0111→1111→1011→1001→1000, which
would represent 7→15→11→9→8 and is clearly not correct. In Gray code
only one bit would change: 0100→1100 and no fake states are introduced.

To convert from Gray code to binary use the following algorithm: From
left to right, copy the first bit of Gray code and then for every next bit sum
the new bit of Gray code to the previous bit of binary (no carry). Example:
11011100 in Gray code becomes 10010111 in binary. To convert from binary
to Gray code: From left to right, keep the MSB (most significant bit) and
then for every bit in Gray code sum the last two bits of binary. Example:
10010111 in binary becomes 11011100 in Gray code.

2.8 Floating point

Floating point numbers are a subject by itself. So far all the calculations were
done with integer numbers, either exclusively positive (N) or both positive
and negative (Z). However, from mathematics we know that there also exist
real numbers (R). And sometimes we would like to do calculations with
these numbers. It then becomes important to realize that our computer is a
finite state machine and registers and memory contents have a finite number
of possible values. Whereas in integer calculations this limitation is, to a
certain degree, rather irrelevant and only limits the range of calculations,

34 CHAPTER 2. NUMBER SYSTEMS

for floating-point calculations these limitations are severe and we have to
keep them in mind. A single float of 32 bits can, for instance, take only 232

(approx. 4 billion) different values, there where the number of real numbers
is infinite, even if we were to limit the range of the numbers to an interval (for
instance only between 0 and 1), any interval. no matter how small, contains
an infinite number of numbers, and not all can be stored in a 32 bit-register.
Our calculations are bound to be incorrect. Take for example the division
1.0/3.0, which is 0.33333. . . and thus incorrect on any finite state machine.
But how incorrect are they going to be? And is that acceptable, or not?
We therefore have to state from the beginning that computers cannot do
calculations with real domain numbers (R). The best they can do is doing
integer numbers that are real-ish. They mimic R floating point numbers.
They are approximations, and we have to keep that in the back of our heads
when we do floating point. With that in mind we can continue.

In our integer number system we used the convention that digits had
weight and the weight started with 1 (right-most digit) and increased by a
factor equal to the base every step to the left. As an example, if the number
base is x, then the number represented by±abcdex is±(a×x4+b×x3+c×x2+
d×x1+e×x0). For example, 123456 = 1×64+2×63+3×62+4×61+5×60 =
186510 = 0×104+1×103+8×102+6×101+5×100, where the convention
was used to write the base as a subscript.

In floating-point notation numbers follow this same scheme. After the
floating point (floating comma in some countries), directly after the least-
significant digit (with weight 1), the digits get divided by the base. So

±abc.dex

is equal to

±(a× x2 + b× x1 + c× x0 + d× x−1 + e× x−2).

Conversion between base systems can become impossible in floating point
numbers. Some numbers, like 0.36, are still possible to convert to base 10,
namely 3 × 6−1 = 5 × 10−1 = 0.510. But what about 0.16? In base-10 it
is an infinite string: 0.166666. . . 10. The reason why Babylonians used the
base-60 number system; it is more likely a division can be written out with
a finite number of digits.

In science lectures we have learned the so-called scientific notation, which
is a way of writing a number as a product of a fraction (f) and an exponent
of 10,

n = f × 10e,

for instance 3.28 × 1021. Because many computers were limited to writing
text with ASCII-only, this scientific notation was also often written in ASCII
in so-called engineering notation, n = 3.28E21.

2.8. FLOATING POINT 35

The wording ’floating point’ is used in computer jargon, because the
decimal point can ’float’ between the digits while adjusting the exponent, as
in,

3.28× 1021 = 0.328× 1022 = 32.8× 1020.

Very important to note at this moment is that any number that has a finite
number of digits can always be described with only integers, without the
floating point, by just floating the point in the fraction until its mantissa
(the part after the floating point) contains only zeros (and can thus be
omitted). As an example,

3.2800× 1021 = 328× 1019,

which is described by f = 328 and e = 19, both integer numbers. For this
reason, we can implement floating point numbers with finite-state integer
machinery.

In the same way, we can also always ’normalize’ numbers by adjusting
the exponent in such a way that the fraction falls within certain limits,
for instance by forcing the part of the fraction before the floating point to
be one non-zero digit, effectively limiting the range of the fraction between
1.000. . . and 9.999. . . (most calculators do like this), or in another scheme
by limiting it to 0.100. . . and 0.999. . . . Such normalization will come in
very handy because for binary numbers limiting the numbers in the same
way from 1.000. . . to 1.111. . . means that the numbers always start with
”1.”, so that part can be omitted because it is information that is redundant!
Most statisticians like to write their probabilities as ”.493”, etc., thus without
this redundant 0. Also many programming languages allow this notation.

Now let’s take a specific example of (decimal) floating point numbers with
3 digits for the fraction and 2 digits for the exponent, both also including a
sign.

±abc× 10±de

What we can say is:
- The largest negative number is −999× 1099

- The smallest negative number is −001× 10−99

- Zero: ±000× 10±xx = 0 (there are many ways of writing zero)
- The smallest positive number is +001× 10−99

- The largest positive number is +999× 1099.
This defines 7 regions in the number scale. As can be seen, and as marked
in Figure 9, some numbers are unattainable with this number system. If the
result of a calculation is too big and falls beyond ±999× 1099 this is called
’overflow’ and the calculator normally refuses to continue. A similar problem
occurs when the number is too small and falls into the ’underflow’ region.
Most calculators treat this number simply as 0 in order not to generate an
error.

36 CHAPTER 2. NUMBER SYSTEMS

0

over

flow

over

flow
under

flow

-99
9E
+9

9

+9
99
E+

99

99

Figure 9: The seven ranges of base-10 floating-point numbers with three
digits for the fraction and two for the exponent. When the number is too
big (on either side), it is called ’overflow’. When it is too small it is called
’underflow’, which is normally mapped to 0.

Note that the absolute error in the numbers — half the distance between
two adjacent numbers — is varying from small numbers to big numbers,
namely from 1× 10−99 to 1× 1099, but the relative error is rather constant
over the entire range, namely about 1/1,000 (0.1%). Still, this error makes
that our floating-point calculations on a computer are not (always) exact.
The rounding introduces errors.

We can also invent other combinations of number of digits for the fraction
and the exponent. If we increase the number of digits for the fraction and
decrease the number of digits for the exponent, the relative error of our
calculations drops, but, as a price to pay, the range of our numbers narrows.
For instance, for a system with 4 digits for the fraction and 1 for the exponent

±abcd× 10±e

- The largest negative number is −9999× 109

- The smallest negative number is −0001× 10−9

- Zero: ±0000× 10±x = 0
- The smallest positive number is +0001× 10−9

- The largest positive number is +9999× 109.

The relative error is now about 1/10,000 (0.01%).

As we will see when we start designing the architecture of our computer,
the IEEE 754 norm implements the floating point numbers in computing.
It is based on a base-2 sign-magnitude number representation, with fields
inside the bit pattern for the exponent and the fraction. As an example, a
float is represented by a 24-bit sign-magnitude fraction with an implicit 1
and an 8-bit excess-127 exponent.

2.9. EXERCISES 37

2.9 Exercises

exercise: Binary to decimal

1: Convert from binary to decimal:
a) 1010001
b) 0.11
c) 1011010.1010

exercise: Octal to decimal

2: Convert from octal to decimal:
a) 273
b) 1021
c) 16.423

exercise: Hexadecimal to decimal

3: Convert from hexadecimal to decimal:
a) 145
b) A2C1
c) 1A.B2

exercise: Binary to hexadecimal and octal

4: Convert from binary to hexadecimal and octal:
a) 10101110101101111011
b) 011011110011110000000001

exercise: Hexadecimal to binary

5: Convert from hexadecimal to binary:
a) 1A.B2
b) A2C1
c) F0AC29E

exercise: Decimal to unsigned binary

6: Convert from decimal to unsigned binary:
a) 122
b) 98

38 CHAPTER 2. NUMBER SYSTEMS

c) 48.45
d) 195.98
e) 500
f) 1000 (be smart, use e)
g) 2000 (be even smarter, use e,f)

exercise: Arithmetic

7: Do the following (unsigned) arithmetic:
a) 101011+10111
b) 1101+1110+1001
c) 11101−10110
d) 1100.010−1000.111

exercise: Sign-magnitude decimal to 10’s-complement deci-
mal

8: Convert from sign-magnitude decimal to 10’s-complement decimal.
Use both techniques, 10.000 . . .−N and 9s’-complement+1:
a) +123
b) −48
c) −323
d) −2047

exercise: Sign-magnitude binary to 2’s-complement binary

9: Convert from sign-magnitude binary (0 ≡ +, 1 ≡ −; first num-
ber is +0010001) to 2’s-complement binary. Use both techniques,
10.000 . . .−N and 1s’-complement+1:
a) 0001 0001
b) 1011 0111
c) 1000 0110
d) 1000 1111

exercise: Subtraction decimal

10: Convert to 10’s-complement decimal and do the subtractions
(adding the 10’s-complement of the negative number):
a) 423− 198
b) 327− 432

2.9. EXERCISES 39

exercise: Subtraction binary

11: Convert to 2’s-complement binary and do the subtractions
(adding the 2’s-complement of the negative number):
a) 79− 42
b) 87− 99

exercise: Binary-coded decimal

12: Do the following arithmetic in BCD:
a) 79 + 101
b) 87 + 179
c) 198− 43
d) 143− 98

exercise: Gray-code

13: Convert the following patterns from Gray-code to binary and
from binary to Gray code:
a) 1010
b) 11011
c) 11000010001

exercise: Sign-magnitude arithmetic

14: Do the following arithmetic in sign-magnitude:
a) 1110× 1101
b) 00010101× 00001010

exercise: decimal to 2’s-complement

15: Convert to 2’s-complement 32-bit binary:
a) 512
b) −1023 (note: 1023 = 210 − 1)

exercise: 2’s-complement to decimal

16: Convert to decimal the 2’s-complement 32-bit binary numbers:
a) 1111 1111 1111 1111 1111 1111 0000 1100
b) 1111 1111 1111 1111 1111 1111 1111 1111
c) 0111 1111 1111 1111 1111 1111 1111 1111

3| Boolean algebra/logic

In the previous chapter number systems were described. It was also pointed
out that the binary number system is the one that is used by computers,
because it is easily implemented in digital electronics with the inputs and
outputs of gates having only two possible states.

The logic step is then to use Boolean algebra in the calculations because
Boolean algebra, or Boolean logic, also works with two distinct possible
values, or states. We call it Boolean algebra when we do actual calculations
and call it Boolean logic when we are using only logical operations, but
from a mathematical point of view, they are indistinguishable. The former
normally talks about 0s and 1s (and is thus a basis for a true number system,
where more than one digit is allowed), while the latter talks about ’true’ and
’false’ (and does not have a sequence of digits as numbers do). They can be
fully interchanged. Convention is often that ’true’ is ’1’ and ’false’ is ’0’. If
we now see a sequence 011101 it can either mean a set of boolean logic values,
false, true, true, true, false, true, or a set of boolean logic values ’0’, ’1’, ’1’,
’1’, ’0’, ’1’. Or it can be a binary number (as explained in the previous
chapter). The different functionality is implemented by the hardware by
so-called (boolean) logic gates.

As we have seen in the introduction chapter, there are exactly 16 possible
logic 2-input-1-output gates. Some of them are silly (like: the output is equal
to one of the inputs, for instance out = A, which is a rather elaborate way of
making a simple wire, or the output is constant, independent of both inputs),
some of them use only one input (like: output is equal to the inverted input
A). The six most used ones were given in Figure 2 and have the following
behavior:

Logic gate Explanation

OR Or: ’true’ if at least one input is ’true’
’false’ if both are ’false’

AND And: ’true’ if both inputs are ’true’
otherwise ’false’

41

42 CHAPTER 3. BOOLEAN ALGEBRA/LOGIC

XOR Exclusive or: ’true’ if exactly one input is ’true’
otherwise ’false’

NOT Inversion. ’true’ if the single input is ’false’
and ’false’ if ’true’

NOR Not or: ’false’ if either one or both inputs are ’true’
otherwise ’true’

NAND Not and: ’false’ if both inputs are ’true’
otherwise ’true’

We can put this in so-called truth tables, where ’0’ represents ’false’ and ’1’
represents ’true’, see Table XII.

Note here, once again, that all this is mere convention. We might as well
have given the gates different names and not talk about ’true’ and ’false’
or ’1’ and ’0’, but, let’s say, ’blue’ and ’red’ or ’car’ and ’human’. What is
important is that the hardware will implement – and is consistent with –
our ideas of trues and falses and thus the behavior of the computer is useful
for us. How this is done is not of our concern here at this moment; it will
be discussed later, but we know, of course, that electronics are underlying
all computers. We might thus think of a ’0’ being a low voltage and a ’1’
high voltage, though this is not necessarily the case. It does not matter to
us; the only thing that matters is that it is implemented following the rules
described here. From here on we will write 1 instead of ’1’ and 0 instead of
’0’, though we should well keep in mind that these are not numbers!

3.1 Set theory and Boolean algebra

In the above we tried to explain the working of a computer by a mathematical
approach – logics. We understand that the computer is made of logic gates
and with these logic gates we can build a computer. We will now take the
opposite approach. We will start with the mathematics of logic and work
from there. Once having established the most basic mathematics, we will
constantly be building on the results obtained at the preceding step and
construct ever more complex systems. At every step new functionalities will
emerge. We will see how we can build any logic function and see how in fact
any operation (including arithmetics, to name but one) can be expressed in
logic functions. It means we now have to go back to the absolute starting
point of computing, namely the mathematics of binary logic of Aristotle.
Binary in that we deal with pieces of information of the type that can have
two possible values. We can imagine answers to questions such as ”Is it
raining?” It has answers of the type true/false. While this is not necessary
– the only thing that is needed is that there exist only two possible values –
we can constantly keep this in mind.

3.1. SET THEORY AND BOOLEAN ALGEBRA 43

Table XII: Truth tables of the six most important logic operations. 1
represents true and 0 represents false.

X NOT X
0 1
1 0

A B A NOR B
0 0 1
0 1 0
1 0 0
1 1 0

A B A NAND B
0 0 1
0 1 1
1 0 1
1 1 0

A B A OR B
0 0 0
0 1 1
1 0 1
1 1 1

A B A AND B
0 0 0
0 1 0
1 0 0
1 1 1

A B A XOR B
0 0 0
0 1 1
1 0 1
1 1 0

To derive the mathematics that are underlying the algebra and thus logic
gates and thus our entire computer, we will use Set Theory. This is a for-
malization of Aristotelean Categories and on which Boolean algebra is based
that is named after George Boole, the 19th century English mathematician.
Set Theory deals with sets of elements that follow certain rules when op-
erations are applied. Classic Set Theory takes operations of union (∪) and
intersection (∩) of subsets of elements of the full set. This is directly related
to logic, because an element is in a union of subsets if the element was in
any of the subsets. So, if it was in subset 1 or subset 2 or Likewise, an
element is in an intersection of subsets if it was in all of the subsets, so in
subset 1 and subset 2 and So we recognize here the binary answers to
the questions ”Was the element in subset X?” We will also use the comple-
ment operation, (X ′), which means all elements of the full set that are not

in the subset X .

Boolean algebra then works with subsets – sets of exactly one element, if
you will – with moreover only two possible values, where they can be any two
values, even things as ’Ajax’ and ’Benfica’ (for your information: the two
best football teams on this planet). (Aristotelean logic then further defines
the values as logical ’true’ and ’false’). The operations of Boolean algebra are
then called disjunction (∨) and conjunction (∧). Disjunction represents the
OR-operation and conjunction the AND-operation, and in Aristotelean logic
they even have this exact meaning, OR and AND. Tradition is to write these
operator symbols as ’+’ and ’·’, which will add some confusion because they
will remind us of arithmetic operations of summation and multiplication,
respectively, which they are definitely not! In spite of the confusion, we will
also use it here.

Apart from this, note also that no inverse operations exist. There is
some kind of adding (a + b), but there is no inverse operation of ’subtrac-

44 CHAPTER 3. BOOLEAN ALGEBRA/LOGIC

Table XIII: Set Theory and corresponding Boolean Logic operations.

Set theory Boolean algebra Aristotel- Here
name symbol name symbol ean logic

union ∪ disjunction ∨ OR +
intersection ∩ conjunction ∧ AND ·
complement X ′ negation ¬ NOT X

A B

A�B
OR

A·B

A B

AND

A

A
NOT

complement '

nagation ¬

union �
disjunction �

intersection ∩

conjunction �

Figure 10: Venn diagrams showing graphically the NOT, OR and AND
operations. In this book we will use these Aristotelean names.

tion’ ! There is no a − b. Likewise, there is some kind of multiplication,
but there is no division! a · b, but no a/b. There are AND-operations and
OR-operations, but no reverse-AND-operations and reverse-OR-operations.
There are inverse sets or inverse elements, but no inverse operations. This
makes sense if we see it as Aristotelean logic, as logic inverses of ’and’ and
’or’ do not exist. This has to do with the principle that logic operations
destroy information, as we will see, and information once destroyed cannot
be recovered. A logic operation cannot be ’undone’ by its inverse.

In summary, in Boolean algebra, conjunction (AND) and disjunction
(OR), and an inverse operation (NOT) are used. The main operators on
these variables are as given in Table XIII.

3.2 Huntington postulates

As we have argued, mathematics is the art of creating virtual worlds on basis
of axioms or postulates. Similar to the construction of the world of natu-
ral number that are based on the Peano axioms on which also arithmetics
(addition and multiplication) can be based we are now going to define the
basis for Boolean Algebra. The mathematics behind this logic and logic
gates is described by the Huntington postulates which implements Set The-

3.2. HUNTINGTON POSTULATES 45

ory with the three (sic) operations AND (·), OR (+) and NOT (X). We will
see that, on basis of these postulates, we can design or describe the entire
computer, from things as simple as logic gates to complex systems such as
mobile-network applets. The six Huntington postulates* are the following:

1. As a first observation it is to be pointed out that this implements the
concept of Set Theory, and these sets are closed sets. The operations
{OR, AND, NOT} on any element of the group of possible (input)
values results in an element of the group of values. In other words, for
any combination of values of A and B in the set:

A+B is an element of the set
A · B is an element of the set
A is an element of the set.

As we know, in binary the set is limited to {0, 1} or {true, false}. It
means in practice that inputs of 0 volt and 5 volt produce outputs of
0 volt or 5 volt, etc. This is not completely true in practice; voltages
have ranges and tolerances. For instance, for an input to be treated
as 0, the voltage has to be below 0.7 volt. And an output of a circuit
that is 0 is guaranteed to be below 0.5 volt (to make sure it is treated
as a 0 in the next stage).

2. Boolean algebra has the commutative law:
A+B = B +A
A · B = B ·A.

This means in reality that we can exchange input pins of our elemen-
tary gates (OR and AND) without altering the output.

3. The associative law tells us:
(A+B) + C = A+ (B + C)
(A · B) · C = A · (B · C),

meaning that it does not matter in what order we process the opera-
tions, first processing A and B and then combining that result with
C, or first processing B and C and then combining the result with
A. This also means that brackets are not needed and we can write
A+B +C and A ·B ·C. Applying the commutative law, we can also
prove that A+B + C = C +B +A and A · B · C = C · B · A, etc. It
also implies that indeed we can treat the logic (and the circuits) fully
by dyadic (two-input) operations (and devices). Multi-input logic can
be constructed from dyadic logic. We will see that this, in fact, is true
for any combination of logic operations, for instance A+B ·C, though
in this case of mixed operation, the associative law no longer applies:
A+(B ·C) 6= (A+B)·C. Moreover, as we will see, the XOR, NOR and

*Edward V. Huntington, ”Sets of Independent Postulates for the Algebra of Logic”.
Transactions of the American Mathematical Society, Vol. 5, No. 3 (Jul., 1904), pp.
288-309. URL: https://www.jstor.org/stable/1986459.

46 CHAPTER 3. BOOLEAN ALGEBRA/LOGIC

NAND logic can be constructed from the above three logic operations
(gates).

4. The distributive law from mathematics implies that
A+ (B · C) = (A+B) · (A+ C)
A · (B + C) = (A · B) + (A · C).

The second one looks familiar from mathematics if we assume the
symbols represent multiplication and addition. In that case, the first
one does not seem to make sense. Yet, it is exactly the same thing.
Both should read as

A op1 (B op2 C) = (A op1 B) op2 (A op1 C),
with op1 and op2 two operations. Substituting op1=+ and op2=· will
result in the first, while substituting op1=· and op2=+ will result in
the second distributive law. Note that it is also valid for op1=op2,

A+ (B + C) = (A+B) + (A+ C)
A · (B · C) = (A ·B) · (A · C),

making use of the commutative law and the useful corollaries A·A = A
and A +A = A that will be discussed below. In standard arithmetic,
the distributive law does not apply because normal mathematical op-
erations have priority, A+ (B × C) 6= (A+B)× (A+ C).

5. Identity elements exist. An element, which we label 0, exists such
that for all A

A+ 0 = A.
This element is unique. There exists only one element that satisfies
the above equation.
Likewise, an element, which we label 1, exists such that for all A

A · 1 = A.
Also this element is unique; there cannot be two elements that satisfy
the equation. Notice that we have not yet identified what these ele-
ments are, nor have we identified what the operations + and · are. 0
could represent ’true’ and 1 ’false’, with · the or-operation and + the
and-operation. It would work. Yet, we know where this will lead to
(hence the suggestive symbols), and actually already presented in the
opening section of this chapter; we started this chapter actually with
physical logic gates. Boolean algebra is defined by the seven rules
stated here. These rules define the existence of such elements and
then we attribute the symbols 0 and 1 to them. From there the logic
follows and we see that we can define operators that follow the logic
and electronic engineers can design electronic gates that implement
the logic operations. From an engineering point of view: we need a
formalism that describes the functionality of our electronic gates and
see that Boolean algebra serves the purpose very well. From a mathe-
matician’s point of view we see that a computer implements Boolean
logic very well.

3.2. HUNTINGTON POSTULATES 47

Table XIV: The Huntington postulates.

H1a ∀A,B ∈ {0, 1} : A+B ∈ {0, 1}
H1b ∀A,B ∈ {0, 1} : A · B ∈ {0, 1}
H2a A+B = B +A
H2b A · B = B ·A
H3a A+ (B + C) = (A+B) + C
H3b A · (B · C) = (A · B) · C
H4a A+ (B · C) = (A+B) · (A+ C)
H4b A · (B + C) = (A ·B) + (A · C)

H5a A · 1 = A
H5b A+ 0 = A

H6a A+A= 1

H6b A ·A= 0

6. Finally, for every element A there exists a unique elementA, called A’s
complement, such that (simultaneously)

A ·A= 0
A+A= 1.

This element is the inverse of A, written asA or !A, also called not-A.

The six Huntington postulates are summarized in Table XIV. We see
that attributing + to logic-OR, · to logic-AND, and ! to logic-NOT does
indeed implement Boolean logic with the seven rules described here if we
consider ’0’ as false and ’1’ as true. (Note that we might as well have chosen
’0’ to be true and ’1’ to be false, with then + the logic-AND operation and
· the logic-OR operation).

exercise: Proof of Postulate H5a

Prove that there is only one element z for which A+ z = A for all A.

Answer: Suppose there are two such different z, namely z1 and z2.
Then A+ z1 = A and A+ z2 = A. Substituting A = z2 in the former
and A = z1 in the latter we get z2 + z1 = z2 and z1 + z2 = z1, using
the commutative law we get z1 = z1 + z2 = z2 and thus z1 = z2,
meaning z1 and z2 cannot be different.

48 CHAPTER 3. BOOLEAN ALGEBRA/LOGIC

exercise: Proof of Postulate H5b

Prove that there is only one element u for which A · u = A for all A.

Answer: Suppose there are two such different u, namely u1 and u2.
Then A · u1 = A and A · u2 = A. Substituting A = u2 in the former
and A = u1 in the latter we get u2 · u1 = u2 and u1 · u2 = u1, using
the commutative law we get u1 = u1 · u2 = u2 and thus u1 = u2,
meaning u1 and u2 cannot be different.

Some useful corollaries of these six rules are given in Table XV*. Two
of them stating that operands are idempotent, A used in an OR or AND
operation with itself results in itself: A+A = A and A ·A = A.

The last two lines of this table are examples of De Morgan’s laws and
can be expressed in English as:

The negation of a disjunction is the conjunction of negations;
and the negation of a conjunction is the disjunction of nega-
tions.

or:

The complement of the union of two sets is the same as the
intersection of their complements; and the complement of the
intersection of two sets is the same as the union of their com-
plements.

The Venn diagrams in Figure 11 make this clearer for the special case of just
one disjunction and conjunction, two variable A and B.
Generally, they are written in mnemonic form to easier remember them,
making use of the mislabeling of ’+’ as ’sum’ and ’·’ as ’product’, and they
become the negation-of-a-sum is the product-of-negations (NoS=PoN):

∑

i Ai =
∏

i

Ai

and the negation-of-a-product is the sum-of-negations (NoP=SoN):

∏

iAi =
∑

i

Ai

In this case the Σ symbol is used to represent the disjunction operation
(’+’, OR) on the elements and Π the conjunction operation (·, AND) and
do not represent the classic arithmetic summing or multiplying operations.

*Huntington himself called some of these corollaries also postulates.

3.2. HUNTINGTON POSTULATES 49

Table XV: Useful corollaries.

C1 A ·A = A (*)
C2 A+A = A (*)
C3 A+ 1 = 1
C4 A · 0 = 0

C5 A+ (A ·B) = A
C6 A · (A+B) = A

C7 A+ (A ·B) = A+B

C8 A · (A+B) = A · B
C9 A = A

C10 (A+B) =A ·B NoS=PoN (o)

C11 (A ·B) =A+B NoP=SoN (o)

*: Idempotent
o: De Morgan. Figure 11

Figure 11: Venn diagrams graphically showing the De Morgan Laws: The
negation of the OR-operation is the AND-operation of the negations (”nega-
tion of a sum is the product of negations”; NoS=PoN) and the negation
of the AND-operation is the OR-operation of the negations (”negation of a
product is the sum of negations”; NoP=SoN).

50 CHAPTER 3. BOOLEAN ALGEBRA/LOGIC

exercise: Proof of Corollaries C1-C9

Prove the corollaries C1 - C9 of Table XV.

Answer:

C1: A ·A H5b
= A ·A+0

H6b
= (A ·A)+ (A ·A) H4b

= A · (A+A)
H6a
=

A · 1 H5a
= A

C2: A+A
H5a
= (A+A) · 1 H6a

= (A+A) · (A+A)
H4a
= A+ (A ·A)

H6b
= A+ 0

H5b
= A

C3: A+ 1
H6a
= A+ (A+A)

H3a
= (A+A) +A

C2
= A+A

H6a
= 1

C4: A · 0 H6b
= A · (A ·A) H3b

= (A · A) ·A C1
= A ·A H6b

= 0

C5: A + (A · B)
H5a
= (A · 1) + (A · B)

H4b
= A · (1 + B)

C3
= A · 1

H5a
= A

C6: A · (A+B)
H4b
= (A · A) + (A ·B)

C1
= A+ (A ·B)

C5
= A

C7: A+(Ā ·B)
H4a
= (A+A) · (A+B)

H6a
= 1 · (A+B)

H5a
= A+B

C8: A · (A+B)
H4a
= (A ·A) + (A ·B)

H6B
= 0 + (A ·B)

H5b
= A ·B

C9: Substitute B = (A) in C7 and find (A) = A or (A) = 0. Substitute

B = (A) in C8 and find (A) = A or (A) = 1. Hence (A) = A.

exercise: Proof of the De Morgan Laws

Proof the De Morgan Laws (corollaries C10 - C11) of Table XV.

Answer:

C10: (A+B) · (A ·B) = A ·A · B +A · B ·B= 0 and
(A+B) + (A ·B) = (A+A+B) · (A+B +B) = 1
Apparently (A·B) is the inverse of (A+B) and we have already
proven before that only one such inverse exist. Therefore,
(A+B) = (A ·B)
NoS=PoN (negation of sum is product of negations).

C11: (A ·B) · (A+B) = A ·A · B +A ·B ·B= 0 and
(A ·B) + (A+B) = (A+A+B) · (Ā+B +B) = 1
Apparently (A+B) is the inverse of (A ·B) and we have already

3.3. FORMAL DERIVATION OF THE TRUTH TABLES 51

proven before that only one such inverse exist. Therefore,
(A · B) = (A+B)
NoP=SoN (negation of product is sum of negations).

3.3 Formal derivation of the truth tables

In the above, we already knew where this was leading too; we knew that the
operations + and · represented the well-known Aristotelean/Boolean logic
operations OR and AND, respectively. However, the more formal derivation
of what the operations actually are can be done on basis of the Huntington
postulates themselves, without any further knowledge. This works as follows:
Imagine we do not know what the operations are, so we name them simply
OPX and OPY. Without loss of generality, we can call the two elements ’0’
and ’1’, without telling what they actually mean; they are just symbols (a
circle and a stick). The Huntington postulates then become:

H1a ∀A,B ∈ {0, 1} : A OPX B ∈ {0, 1}
H1b ∀A,B ∈ {0, 1} : A OPY B ∈ {0, 1}
H1c ∀A ∈ {0, 1} :A∈ {0, 1}
H2a A OPX B = B OPX A
H2b A OPY B = B OPY A

H3a A OPX (B OPX C) = (A OPX B) OPX C
H3b A OPY (B OPY C) = (A OPY B) OPY C

H4a A OPX (B OPY C) = (A OPX B) OPY (A OPX C)
H4b A OPY (B OPX C) = (A OPY B) OPX (A OPY C)

H5a A OPY 1 = A
H5b A OPX 0 = A

H6a A OPX A= 1

H6b A OPY A= 0

In the first step we prove that 0= 1 by the following steps:

52 CHAPTER 3. BOOLEAN ALGEBRA/LOGIC

1) 0∈ {0, 1} (H1c), in other words
0= 0 or 0= 1

2) 0 OPX 0 = 1 (H6a, with A = 0), but also
3) 0 OPX 0 = 0 (H5b, with A = 0), therefore
4) 0̄ 6= 0 therefore

0= 1

The same way we can prove that 1= 0. Substituting this in H6 we get

H6a(0): 0 OPX 1 = 1
H6a(1): 1 OPX 0 = 1
H6b(0): 0 OPY 1 = 0
H6b(1): 1 OPY 0 = 0

We can also write out the postulates H5 explicitly:

H5a(0): 0 OPY 1 = 0*
H5a(1): 1 OPY 1 = 1
H5b(0): 0 OPX 0 = 0
H5b(1): 1 OPX 0 = 1*

*: equal to H6 above

We have here already six of the eight entries of our two truth tables. The
final entries can be found by applying the postulates, and find once again
some useful corollaries. The same way we did before. Namely:

C1: A OPY A = A, because:

A OPY A
H5b
= A OPY A OPX 0

H6b
= (A OPY A) OPX (A OPY A)

H4b
=

A OPY (A OPX A)
H6a
= A OPY 1

H5a
= A

C2: A OPX A = A, because:

A OPX A
H5a
= (A OPX A) OPY 1

H6a
= (A OPX A) OPY (A OPX A)

H4a
= A OPX (A OPY A)

H6b
= A OPX 0

H5b
= A

This means that

C1(0) 0 OPY 0 = 0
C1(1) 1 OPY 1 = 1*
C2(0) 0 OPX 0 = 0*
C2(1) 1 OPX 1 = 1

*: equal to H5 above

Arriving at the final truth tables of our two operations OPX and OPY as
shown below:

3.3. FORMAL DERIVATION OF THE TRUTH TABLES 53

A B OPX
0 0 0
0 1 1
1 0 1
1 1 1

A B OPY
0 0 0
0 1 0
1 0 0
1 1 1

And we see that this is Boolean logic if 0 ≡ false, 1 ≡ true, OPX ≡ OR,
and OPY ≡ AND. Actually, we might just as well have said that 0 ≡ true,
1 ≡ false, OPX ≡ AND, and OPY ≡ OR; it would work just as well. Once
again, the mathematician nor the computer engineer cares about whether
this follows (Aristotelean) ’logic’. It is simply the creation of a (virtual)
world (in this case truth tables) on basis of axioms (postulates) for the
mathematician, and the implementation of these truth tables in electronics
for the engineer, where in the latter a mapping is done as in 0 ≡ 0 volt and 1
≡ 5 volt (in transistor-transistor logic [TTL]) or 3.3 volt (in complementary
metal-oxide-semiconductor logic [CMOS]).

❉

For curiosity’s sake we end this section by mentioning that it is apparently
not possible to make a similar derivation for ternary logic. (The postulates
only work for 2n-logic). Or as Robert Jay Thomas writes*,

Since any Boolean algebra must have 2n elements, where n is a
natural number, such an algebra cannot be a Boolean algebra.
Therefore, if we wish to have an algebra, or logic, in which the
variables are three valued, we must develop another system.

To give you an idea, as mentioned before, there are 16 (24) possible two-
inputs binary (note: 22 = 4, the number of lines in a truth table) logic gates.
We could still do the analysis by exhaustive search. In the same way we can
see that with there are 32 = 9 lines of a truth table of a two-input ternary
gate. With each value having three possibilities, there are 39 = 19, 683
possible logic gates and an exhaustive brute-force analysis is prohibitive.
Nor is a mathematical derivation possible, as stated by Thomas.

So, the solution will be given by declaration. The system mostly pre-
sented is the Kleene logic of indeterminacy, also known as Priest’s logic of
paradox. It can use the values −1, 0 and +1 for representing ’false’, ’un-
determined’, and ’true’, respectively, so called balanced ternary values. It
can also use unbalanced ternary values 0, 1 and 2, already prepared for
arithmetic, in line with our numbers systems presented in Chapter 2 and
probably more adequate for computing. The truth tables (in 3×3 form) for
unbalanced ternary are given by,

*Robert Jay Thomas, ”Classification and properties of three values logics”. Thesis
University of Illinois (1964).

54 CHAPTER 3. BOOLEAN ALGEBRA/LOGIC

A A
0 2
1 1
2 0

MIN B
(TAND) 0 1 2

0 0 0 0
A 1 0 1 1

2 0 1 2

MAX B
(TOR) 0 1 2

0 0 1 2
A 1 1 1 2

2 2 2 2

XOR B
(TXOR) 0 1 2

0 0 1 2
A 1 1 1 1

2 2 1 0

IMP B
0 1 2

0 2 2 2
A 1 1 1 2

2 0 1 2

These implement the negation, minimum, maximum, exclusive or, and ma-
terial implication, respectively. (Note: material implication does not follow
postulate 2, the commutative law, that would require that (A IMP B) = (B
IMP A); the truth table in 3×3 format is not symmetric, and IMP cannot
serve as an elementary ternary gate.

It is for the reader to take it from there if interested in ternary logic.
To my knowledge, however, it is not possible to implement all possible logic
functions on basis of these elementary truth tables, in contrast to binary
logic. An example is the equivalent of the binary half-adder (to be presented
in the chapter on integration, Ch. 5) with outputs of sum Σ and carry c would
be

Ternary half adder:

A B Σ c
0 0 0 0
0 1 1 0
0 2 2 0
1 0 1 0
1 1 2 0
1 2 0 1
2 0 2 0
2 1 0 1
2 2 1 1

Σ B
0 1 2

0 0 1 2
A 1 1 2 0

2 2 0 1

c B
0 1 2

0 0 0 0
A 1 0 0 1

2 0 1 1

An empiric search with a maximum of 8,000 ternary logic gates done by
the author did not result in a realization of this table. In practice, ternary
logic is often implemented by decoding the ternary digits (trits) to binary,

3.4. FROM POSTULATES TO TRUTH TABLES 55

doing the computation in binary and then encoding the result in ternary.
The solution for the half adder will be given along the binary half-adder in
Chapter 5 on page 111.

The rest of the book is about binary logic only. Note that this ternary
logic has nothing to do with tri-state to be discussed later. Tri-state of a
logic gate means it is not generating any logical value at its output. It is
electrically disconnect from the rest of the circuit. Ternary gate means the
output can be any of three values.

We end this section by a funny observation, why boolean yes/no logic is
not always adequate:

The judge was asking the defendant, ”Yes or no. Did you, or did
you not stop beating your wife?”

A third option seems in place here . . .

3.4 From postulates to truth tables

The next step is to see how any logic can be implemented by the three ba-
sic Huntington operations NOT, AND and OR. For that we go back to the
truth tables introduced in the beginning of the chapter. In these, the logic
output value for all possible combinations of logic input values is summa-
rized. Moreover, it is convention to do this in such a way that the input
combinations, when read as a binary number are ordered from low to high.
For example, if the logic operation (or logic gate) has three inputs, a, b and
c, and we assume that a is the MSB (most significant bit) and c the LSB
(least significant bit), then the first line of the truth table presents the out-
put value for a = 0, b = 0, c = 0, the second line gives the output value for
a = 0, b = 0, c = 1, the third line for a = 0, b = 1, c = 0, etc.

With the Huntington postulates we will first construct the truth table
for AND, OR and NOT operations. Note that this seems the opposite way
of doing things, namely we expect that the truth tables are describing the
operations of logic gates from which we see that they follow the Huntington
postulates. But don’t forget that we followed here the reasoning of building
from mathematics and not to mathematics. Here we will construct the
truth tables of the three fundamental operations OR, AND and NOT, which
should, if everything goes well, reproduce Table XII.

Let’s first fill the truth table for the OR operation (+). From the table
of useful corollaries (Table XV; chose a suitable value for A) we see that
0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, and 1 + 1 = 1, which is indeed what
we found in the beginning of the chapter. Let’s do the same for the AND
operation (·). We find from the corollaries table that 0 · 0 = 0, 0 · 1 = 0,
1 · 0 = 0, and 1 · 1 = 1, which is once again the same result as found in
the beginning of the chapter. Finally, the NOT operation, knowing that

56 CHAPTER 3. BOOLEAN ALGEBRA/LOGIC

A ·A = 0 and A +A = 1, and looking at the useful correlations table, we
derive that 0= 1 and 1= 0, which was already presented in the truth tables.
We conclude that the Huntington postulates are apparently indeed a good
basis for implementing Aristotelean logic. And the truth tables summarize
the operations based on the Huntington postulates.

3.5 Implementing any logic (function); sum-of-
products (SoP) and product-of-sums (PoS)

On basis of the three fundamental operations of the Huntington postulates
(AND, OR, NOT) we can build any logic. Any truth table of any number
of input variables (so any logic gate with any number of inputs) can be
made. While it does not always lead to the simplest form, and we will
actually immediately afterwards learn how to simplify the result, we will
now present two similar methods that will lead to a successful Boolean-
algebraic expression of any truth table. They are called sum-of-products
(SoP) and product-of-sums (PoS), respectively. This nomenclature is based
on the fact that the AND operator (·) resembles a product symbol and the
OR operator (+) a sum symbol. A sum-of-products is thus, in fact, an OR
of ANDs and a product-of-sums is an AND of ORs.

In the sum-of-products (SoP) method, we write in the truth table at
every line the (unique) ’product’ of all variables that results in 1 for that
input combination. So, for instance for a triple input (a, b, c) logic function
only the product a · b · c is 1 for a = 0, b = 0 , and c = 0, the first line
of the truth table. The unique product is called a ’minterm’ m and all the
minterms are summarized in Table XVII, labeled by the numeric value of
the binary inputs: m0 belongs to abc = 000 = 010, etc. Note that from now
on we will no longer write the AND-operator (·) and assume it to be implicit
any time two variables are joined. So, for example, ab implies a · b, which
implied a AND b.

To find the logic implementation of any function by the SoP method,
simply ’sum’ (OR) all minterms that have a 1 in the corresponding line of
the truth table. An example is given in Table XVIII. To further abbreviate
the function, often the convention is used to name all minterms by Σ, as
shown in the table. We can think of every minterm introducing one 1 in a
truth table that started out ’empty’ (with only 0s). In other words, the Σ
notation lists all lines of the truth table with a 1.

Similarly, a solution by the PoS method can be found by starting the
place in the truth table on every line a ’Maxterm’ that represents a sum
that is uniquely 0 for those input values. For instance, for a = 0, b = 0, c =,
the Maxterm M0 is (a + b + c). In our final Boolean algebra expression we
simply ’multiply’ (AND) all Maxterms that have a 0 in the corresponding

3.5. SUM-OF-PRODUCTS (SOP) AND PRODUCT-OF-SUMS (POS) 57

Table XVII: Minterms and Maxterms for a triple-input logical function.

a b c minterm Maxterm

0 0 0 m0 = abc M0 = (a+ b+ c)

0 0 1 m1 = abc M1 = (a+ b+ c)

0 1 0 m2 = abc M2 = (a+ b+ c)

0 1 1 m3 = abc M3 = (a+ b+ c)

1 0 0 m4 = abc M4 = (a+ b+ c)

1 0 1 m5 = abc M5 = (a+ b+ c)

1 1 0 m6 = abc M6 = (a+ b+ c)

1 1 1 m7 = abc M7 = (a+ b+ c)

Table XVIII: Example of SoP and PoS solutions of a logic function F .

a b c F minterm Maxterm
0 0 0 0 M0 = (a+ b+ c)

0 0 1 1 m1 = abc
0 1 0 1 m2 = abc
0 1 1 1 m3 = abc
1 0 0 0 M4 = (a+ b+ c)
1 0 1 0 M5 = (a+ b+ c)
1 1 0 1 m6 = abc

1 1 1 0 M7 = (a+ b+ c)

FSoP = Σ(1, 2, 3, 6) = m1 +m2 +m3 +m6

= abc+ abc+ abc+ abc
FPoS = Π(0, 4, 5, 7) = M0M4M5M7

= (a+ b+ c)(a+ b+ c)(a+ b+ c)(a+ b+ c)

58 CHAPTER 3. BOOLEAN ALGEBRA/LOGIC

line of the truth table. Table XVIII also shows a PoS solution to the same
function F used for the SoP solution. Also here a further abbreviation is
used by naming all Maxterms by Π , as shown in the table. We can think
of every Maxterm introducing one 0 in the truth table that started out ’full’
(with only 1s). And the Π shorthand notation lists all lines of the truth table
with a 0. It is therefore obvious that Σ and Π are complementary notations,
since a line has either a 1 or a 0, making it contribute to either Σ or Π, but
not both.

Although these procedures assuredly result in algebraic solutions (and,
as we will see later, electronic solutions as well), it does not mean that this
is the unique solution or even the best solution. Without much work they
can readily be simplified by using Karnaugh maps, as we will see in the next
section.

Note that the triple-input AND-operations are, in fact, two double-input
AND-operations. For example, abc = a·(b·c) or (a·b)·c, the two being similar,
as demonstrated by the Huntington postulates. Likewise, the triple-input
OR-operations are two double-input OR-operations. For example, (a+b+c)
= (a + b) + c or a + (b + c). That is because Boolean algebra, as built on
the Huntington postulates, use double-operand operations only. As we will
see later, real electronic gates can, however, have multiple-operand versions
of the operations.

❉

Having said all this, and having shown that any logic can be made from
AND, OR and NOT operations, we will see that in reality in CMOS technol-
ogy (complementary metal-oxide-semiconductor) a much better implemen-
tation is by only NAND and NOR gates. That is because AND and OR
gates take 6 transistors each, while NAND and NOR gates can be made of
only 4 transistors. In fact, AND and OR gates, as we will see, are simply
NAND and NOR gates, respectively, with a two-transistor inverter added at
the output.

Thus we can save transistors using De Morgan’s laws. As an example,
the SoP operation of four inputs, a, b, c, d:

(a AND b) OR (c AND d)

can easily be converted into a NAND-only expression:

(a · b) + (c · d) = (a · b) + (c · d)
= (a · b) · (c · d)

and that is

(a NAND b) NAND (c NAND d).

3.6. KARNAUGH MAPS 59

In general, a SoP can be converted into

Σj (Πixi)j = Πj

(

Πixi

)

j
.

Likewise, a PoS can be converted into only NOR operations. For example,

(a OR b) AND (c OR d)

can easily be converted into only NAND operations using the De Morgan’s
laws:

(a+ b) · (c+ d) = (a+ b) · (c+ d)

= (a+ b) + (c+ d)

and that is

(a NOR b) NOR (c NOR d).

In general, a PoS can be converted into

Πj (Σixi)j = Σj

(

Σixi

)

j
.

Igoring the NOT operations for a moment, this method reduces the number
of transistors in CMOS technology from 6 × (I + J) to 4 × (I + J), with I
and J the number of input variables and minterms/Maxterms respectively.

3.6 Karnaugh maps

The task of an engineer is to minimize the number of transistors and the
number of steps in a logical circuit. In general we must reduce complexity
of the hardware to lower the cost and increase the speed. We do this by
reducing the mathematical complexity. Find simpler solutions to the same
logical functions. The first step of simplification was found in the previous
section. By using the De Morgan’s laws we could convert logic to NAND-
operations-only and NOR-operations-only (as we will see in the next chapter,
NAND and NOR gates are simpler than their AND and OR siblings). In
this section we will see how using Karnaugh maps can help us further reduce
complexity.

The method of using Karnaugh maps are based on properties of the
Boolean algebra. As an example, take the logic function

F = A ·B · C +A ·B · C.

The distributive law tells us that this is equal to

F = (A+A) ·B · C,

60 CHAPTER 3. BOOLEAN ALGEBRA/LOGIC

and the expression inside the parentheses is equal to the element 1. Thus

F = 1 · B · C = B · C.

We have thus completely eliminated signal A from the logic. This very
much simplifies the final logic. The beginning expression had four AND-
operations and one OR-operation. The final expression can be made with
only one AND-operation.

The question is now, how to find such simplifications in more complex
Boolean algebraic functions? Here is where the Karnaugh maps come in
handy. What we will do is place the output values of the truth table in
a two-dimensional table, where adjacent cells only differ by exactly one of

the input terms. An example is the following truth table of a 3-input logic
function F (A,B,C) given by

A B C F min Max

0 0 0 0 ABC (A+B + C)
0 0 1 0 ABC (A+B + C)

0 1 0 0 ABC (A+B + C)
0 1 1 1 ABC (A+B + C)
1 0 0 0 ABC (A+B + C)
1 0 1 1 ABC (A+B + C)
1 1 0 1 ABC (A+B + C)

1 1 1 1 ABC (A+B + C)

We obtain the following Karnaugh map:

For instance, the value for the minterm ABC is 1, so we place a 1 at the
corresponding cell of the Karnaugh map. This way we fill up the entire map.
The trick is now this:

• For every neighboring pair of 1s we can eliminate a variable from part
of the expression.

Take for example the two 1s highlighted below:

3.6. KARNAUGH MAPS 61

� �

�

�

CC 	

0
1

111

these represent the expression

ABC +ABC

and B can be eliminated from this:

ABC +ABC = AC(B +B) = AC · 1 = AC.

We can actually directly visually identify this term of the final expression in
the KArnaugh map. Look again at it and identify that the loop falls fully
within the A-half as well as the C-half, so the term must be AC.

We can repeat this for every pair of 1s we find. (NB: it does not matter
if a 1 is already used in this approach in an expression; we can use it as often
as we want). We can then also combine two pairs of pairs of 1s and remove
even two variables from the expression. The final SoP Karnaugh map looks
like this:

So that the original SoP expression

F = ABC +ABC +ABC +ABC

is reduced to
F = AB +AC +BC,

5 gates instead of 11. That can further be reduced using de Morgan’s laws
as described above.

Likewise, we can construct the Karnaugh map for the PoS implementa-
tion. Note that 0s and 1s appear in different places of the map. That is
because a line for, for example A=0, B=0, C=0 has a minterm ABC but
a Maxterm (A + B + C), note the inversions. Instead of redrawing the en-
tire Karnaugh map, we can simply convert a SoP Karnaugh map to a PoS
Karnaugh map by negating the variables along the edges of the table:

62 CHAPTER 3. BOOLEAN ALGEBRA/LOGIC

� �

 � �

� �

� �

 � �

� �

A+(A·B) = A

A A

B

B 1 0

1

A A

B

B 1 0

1

A+(A·B) = A+B

1 1

AA

B

B

1 0

1 0

AA

B

B

1 0

1 0

A·(A+B) = A

AA

B

B

0

1

AA

B

B

00

01

A·(A+B) = A+B

0

0

Figure 12: Prove of corollaries C5. . . C8 by use of Karnaugh maps.

��

�

�

���

����

����

Now ’hunting’ for 0s, the PoS

F = (A+B + C)(A +B + C)(A+B + C)(A+B + C)

can be reduced to
F = (A+B)(A+ C)(B + C).

Note the cyclic character of a Karnaugh map. A zero on the bottom left
was joined with a 0 on the bottom right. This is allowed because they also
differ in just one variable, in this case the variable A. Also here we reduce
the number of operations from 11 to 5.

❉

To show the usefulness of Karnaugh maps we can also demonstrates some
of the corollaries of Table XV. This in case we forget our rules, but only
remember Karnaugh maps. This is done in Figure 12.

❉

In some cases the truth table can contain so-called ’don’t-cares’, often
indicated with an x. We can imagine a circuit that drives a numerical display
using BCD digits. The combinations 0xA (1010) to 0xF (1111) are irrelevant.

3.6. KARNAUGH MAPS 63

It does not matter how the circuit would respond in these cases, since they
can never occur and thus do not have to be taken into account. In these
cases we can substitute for the don’t-care x a 0 or a 1, whichever comes in
more handy.

Take for example a 7-segment display shown in Figure 13. The truth
table for the seven display segments is

digit binary segment
a b c d A B C D E F G

0: 0 0 0 0 1 1 1 0 1 1 1
1: 0 0 0 1 0 0 1 0 0 1 0
2: 0 0 1 0 1 0 1 1 1 0 1
3: 0 0 1 1 1 0 1 1 0 1 1
4: 0 1 0 0 0 1 1 1 0 1 0
5: 0 1 0 1 1 1 0 1 0 1 1
6: 0 1 1 0 1 1 0 1 1 1 1
7: 0 1 1 1 1 0 1 0 0 1 0
8: 1 0 0 0 1 1 1 1 1 1 1
9: 1 0 0 1 1 1 1 1 0 1 1
A: 1 0 1 0 x x x x x x x
B: 1 0 1 1 x x x x x x x
C: 1 1 0 0 x x x x x x x
D: 1 1 0 1 x x x x x x x
E: 1 1 1 0 x x x x x x x
F: 1 1 1 1 x x x x x x x

The Karnaugh map of segment C of this 7-segment display is given in Fig.
. 13. For x we can substitute 0 or 1. In this case we chose 0 for the two
indicated and the rest 1, and we chose a product-of-sums approximation so
that the final expression becomes C = (b+ c+ d)(b + c+ d).

❉

Finally, we can take a look here at the XOR (exclusive OR) operation,
often written as ⊕. It is 1 for either A or B equal to one, but not both, that
latter combination being excluded and making it different from a normal
OR operation. Its truth table is thus given by

XOR

A B A⊕B
0 0 0
0 1 1
1 0 1
1 1 0

Formally applying the SoP approach, the XOR operation can be expressed
as

A⊕B = AB +AB,

64 CHAPTER 3. BOOLEAN ALGEBRA/LOGIC

�

� �
D

E F

G

a a

b b b

c

c

d

d

d

10

10

11 01 00
ab

cd

11

01

00

x x

x x

x

x

�

�

�

�

�

�

��

�

�
�

��

� �

�

Figure 13: Seven-segment display and the Karnaugh map of segment C.
For x we can substitute 0 or 1, whatever comes in handy. In this case we
chose 0 for the two indicated and the rest 1, and we chose a product-of-sums
approximation so that the final expression becomes C = (b+c+d)·(b+c+d).

� �

! " #

"#

Figure 14: Karnaugh map of an XOR operation (⊕). Note the checkered
pattern (highlighted by shading the fields containing 1).

and this cannot be simplified using a Karnaugh map, since nowhere does it
have neighboring 1s. Yet, looking at a Karnaugh map, we see the check-
ered chessboard structure. Thus, when we see checkered structures in the
Karnaugh map, beware, possibly XOR operations can be used.

For completeness sake, all the SoP and PoS representations of the XOR
and NOT-XOR operations are

A⊕B = AB +AB

A⊕B = AB +A ·B
A⊕B = (A+B)(A+ B)

A⊕B = (A+B)(A+ B),

which all have checkered Karnaugh maps. (Note we had to go back to the
dot notation in the second one, because the negation of a product is not the
same as the product of negations, A · B 6= A · B, and without the dot, the
text processor makes it into AB 6= AB, indistinguishable).

3.7. EXERCISES 65

Table XIX: Truth table of a 2-bit comparator.

A1 A0 B1 B0 A < B
0 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 0
0 1 1 0 1
0 1 1 1 1
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 1
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 0

exercise: Comparator

Give a Boolean expression for a comparator that has two 2-bit inputs
A (A1,A0) and B (B1,B0) and outputs 1 if A < B and 0 otherwise.

Answer: The truth table of this comparator is given in Table XIX,
which converts into the Karnaugh map of Figure 15. Using a SoP
approach we get the Karnaugh map given in that figure and the
expression (A < B) = A1B1 +A0B1B0 +A1A0B0.

3.7 Exercises

exercise: Boolean proof

1: Prove the following equations:
a) (a+ b)(a+ b) = ab+ ab (≡ a⊕ b)
b) (ab+ c)b = abc+ abc+ abc
c) bc+ ad = (b + a)(b+ d)(a+ c)(c+ d)

66 CHAPTER 3. BOOLEAN ALGEBRA/LOGIC

A1 A1

A0 A0 A0

B1

B1

B0

B0

B0

10

10

11 01 00

A1A0

B1B0

11

01

00

1

1

1

100

0

1

10

0

0000

0 (A<B) = A1B1 + A0B1B0 + A1A0B0

Figure 15: Karnaugh map and final expression of a 2-bit comparator.

exercise: Logic complement

2: Find the complement of the following expressions:
a) F = a+ bc
b) F = a(b+ c) + bd(a+ c)

exercise: SoP and PoS

3: Find the truth table and SoP and PoS implementations (simplified
by Karnaugh maps) of the following logical functions:
a) F = a+ bc
b) F = ac+ bc+ ab
c) F = (a+ b)(a+ b+ c)

exercise: Karnaugh maps: SoP

4: Using Karnaugh maps, find the simplified SoP function of:
a) F (a, b, c, d) = Σ(1, 3, 5, 7, 8, 10, 12)
b) F (a, b, c) = Σ(0, 1, 3, 4, 6, 7)

exercise: Karnaugh map: PoS

5: Using Karnaugh maps, find the simplified PoS (!) function of:
a) F (a, b, c) = Σ(0, 1, 2, 5, 7)
b) F (a, b, c, d) = Σ(0, 1, 9, 10, 11)
a) F (a, b, c) = Π(0, 1, 2, 5, 7)

3.7. EXERCISES 67

exercise: Karnaugh map: don’t cares

6: Using Karnaugh maps, find the simplified SoP functions of (un-
derline is ’don’t care’):
a) F (a, b, c) = Σ(0, 3, 5, 7)
b) F (a, b, c, d) = Σ(1, 2, 3, 5, 6, 7, 9, 10, 11, 12, 15)

exercise: Majority-vote

7: What is the logical expression for a majority vote-function (’true’
if majority of inputs is ’true’, otherwise ’false’)? Use a truth table
and a Karnaugh map to come up with your answer.

exercise: Priority circuit

8: A circuit has 4 inputs, I3. . . I0. The 2-bit output (O1,O0) of the
circuit is the binary representation of the highest input with a 1. For
example, O1,O0=10 indicates that I2 is the highest input with a 1,
so I3=0, I2=1, I1=x, I0=x (x is ’don’t care’). Find the logic function
that describes the circuit.

4| Hardware components

It is now time to take a look how the boolean logic (and thus numbers)
is implemented in hardware. In principle we can implement the logic in
many ways, and they do not necessarily be electronic. Take for example
the Difference Engine of Charles Babbage (see Figure 16). It consisted of
mechanical calculations performed on cylinders and will be discussed in the
chapter with examples of architectures at the end of this book.

However, modern non-human calculations are mostly done by electronic
computers of all sorts. We therefore have to start by explaining how the
basic Boolean operations are achieved by electronics, and then we show how
these basic boolean ’gates’ can be combined to result in more sophisticated
logical functions. We will then add feedback to components, to give them
a ’memory’ effect, at which stage we will talk about ’finite-state machines’.
These components will then be further integrated to result in rudimentary
calculation devices (arithmetic and logic units). Further integration then will
lead to central processing units. This will then be placed on an electronic
circuit board and make it communicate with other components and this is
called a ’computer’. In summary, we will integrate components:

Transistors
Gates
Logic circuits and memory elements
Arithmetic and logic units (ALU)
Central-processing units (CPU)
Computers.

Starting with electronics, transistors.

4.1 Electronics: from transistors to gates

A transistor, short for ’trans-resistor’, is a three-pin component that let’s the
resistivity between two pins be regulated by a voltage on a third pin. We
will skip here the entire description of the analysis of the analog behavior of

69

70 CHAPTER 4. HARDWARE COMPONENTS

Figure 16: A portion of the Difference Engine of Charles Babbage. (Public
domain image).

such transistors, which is a subject of its own, and I happily refer the reader
to my own book Electronic Instrumentation. We will assume here that a
transistor has only two states (hence ’binary’ or ’digital’, with a digit being
binary with only two possibilities, 0 or 1). A transistor either fully conducts
(zero resistance) or doesn’t conduct at all (infinite resistance), depending
on the voltage at the controlling pin. Moreover, the resistance between the
controlling pin and the other two pins is infinite; never is there any ’leakage’
of current or signal. We will actually confine our description to field-effect
transistors (FETs), which come very close to this behavior. Especially we
use MOS type. Metal oxide semiconductor.

Such transistors come in two types, which we can call n-channel and p-
channel, see Figure 17. The n-channel transistors conduct when they have a
layer of electrons attracted to the interface by the in-pin. Positive voltages
attract electrons, so we have to make the in-pin positive, for instance by
setting it equal to pin A, and pin B is at ground. In that case a current can
flow between A and B. A p-channel conducts with positive charge (holes) and
we have to attract them to the interface by a negative voltage, for instance
equal to pin B, while pin a is at a high voltage. In summary: To switch the
transistor off, we have to make the input pin equal to the pin with the arrow.
To switch it on, we have to make the in-pin equal to the pin without the
arrow. The arrow indicates this function in the transistor symbol. It also
indicates the flow of electrons that is then opposite the direction of current.

With these two components we can built our elementary logic gates. As a
first example, Figure 18 shows an inverter. It is composed of two transistors

4.1. ELECTRONICS: FROM TRANSISTORS TO GATES 71

i$

%

&p
-c
h
a
n
n
e
l

lo

hi

lo

hi

hi

lo

MOS-FET

in

A

Bn
-c
h
a
n
n
e
l

hi

hi

lo

lo

hi

lo

ON OFF

Figure 17: MOS-FET transistors of p-channel and n-channel type. The
arrow points to higher voltage (and in direction of flow of negatively-charged
electrons). To make a transistor stop conducting from A to B (’OFF’), we
have to make the voltage at the in pin equal to the voltage of the pin with the
arrow. To make it conduct (’ON’) it should be equal to the other pin. The
right image shows how to do that, ’hi’ means high voltage (power supply),
and ’lo’ means low voltage (other power supply or ground).

of complementary type, hence we call it CMOS technology. Complementary
MOS. They are connected in cascade to the power supplies Vdd and Vss, for
instance +5 V and 0 V. If the input voltage at ’in’ is high (hi = +5 V, equal
to Vdd), the top transistor Qp does not conduct, but the bottom transistor,
Qn, does. That means that the output, ’out’, is effectively shorted to Vss,
and that means low voltage (lo = 0 V). On the other hand, if the input
voltage is low, the top transistor Qp conducts and the top one, Qn, not,
making the output shorted to Vdd (hi = +5 V). In summary. the behavior
is like this:

in out
lo hi
hi lo

Or if we use the convention that low voltage is written down as ’0’ and high
voltage as ’1’, we have the truth table

in out
0 1
1 0

or as boolean values

in out
false true
true false

72 CHAPTER 4. HARDWARE COMPONENTS

Vss

A

Vdd

out

Qn

Qp

0

1

1

0

0

0

1

1

N
O
T
: A outNOT

outA

0
1

1
0

outA

lo
hi

hi
lo

Figure 18: Left: An inverter NOT-gate based on two MOS-FET transistors.
When the input is hi (’1’), the top transistor (p-channel) is switched off and
the bottom transistor (n-channel) is switched on. (A situation shown in the
bottom left). The result is a short circuit of the output to 0. With a lo
(’0’) at the input, the transistors switch roles and the output is connected
to 1 (hi). (A situation shown in the bottom right). In CMOS, never a direct
path exists between the two power supplies, Vdd and Vss, thus drastically
reducing power consumption.

This is the classical behavior of an inverter. In digital logic we call it a
NOT-gate, and the output is labeled Q instead of out. For the symbol we
will use a triangle (which represents a buffer, something that can supply
the necessary current to the next stage), and a circle (which indicates the
NOT-operation):

NOT

A Q
0 1
1 0

Note that in both cases there is no direct path from the top power supply
(Vdd) to the bottom power supply (Vss). Either the n-channel is switched
off, or the p-channel is. Nowhere is a current possible between the two supply
sources. This reduces the overall power consumption drastically. Only power
is used to drive the output. This is the great advantage of CMOS and the
reason why it is the most-used technology in computer applications.

We can now build more complicated gates that have two input terminals.
Figure 19 shows a NAND-gate made of four MOS-FET transistors (2 p-
channel and 2 n-channel). To have the output connected to the lo(w) (’0’)

4.1. ELECTRONICS: FROM TRANSISTORS TO GATES 73

'

Vdd=hi

out

QpA

N
A
N
D
:

Vss=lo

B

QpB

QnB

QnA

outA B

lo lo
lo

lo
hi

hi
hi hi

hi
hi
hi
lo

NAND

A

B
out

outA B

0 0
0

0
1

1
1 1

1
1
1
0

Figure 19: A NAND-gate composed of four MOS-FET transistors. To
make the output lo, both inputs A and B have to be hi to switch on both
n-channel transistors QnA and QnB. Otherwise the output is hi.

power supply, both n-channel transistors QnA and QnB, that are connected
in cascade, have to be switched on with a hi(gh) (’1’) at their inputs A and
B. And in this case we use two p-channel transistors QpA and QpB that
are both switched off by the same inputs A and B, to disconnect the hi(gh)
power supply. If one of the inputs A or B is lo(w), or both, the connection
of out with the lo(w) power supply is lost and an connection of out with the
hi(gh) power supply established through either QpA or QpB, or both. In
other words, the truth table of this NAND circuit is

NAND

A B Q
0 0 1
0 1 1
1 0 1
1 1 0

And the symbol is shown here as well. (From now on we will abbreviate
hi(gh) voltage with ’1’ and lo(w) voltage with ’0’). Once again, note that
never is a direct path from Vdd to Vss possible. This is the quintessential
aspect of CMOS technology.

Following this reasoning, 3-input NAND-gates can easily be made by
adding another p-channel transistor QpC in parallel with QpA and QpB
and another n-channel transistor QnC in cascade with QnA and QnB. The
output of this circuit is lo (0) if all three n-channel transistors conduct and
all three p-channel transistors are switched off, which only occurs for A =
B = C = 1. We may even add more inputs and transistor pairs to get a
general n-input NAND-gate, but there is a natural limit to this, for electronic
reasons. Yet, we can say that an n-input NAND-gate can be made of 2n
transistors.

74 CHAPTER 4. HARDWARE COMPONENTS

(

Vdd=hi

out

QpA
N

O
R

Vss=lo

B
QpB

QnBQnA

A

B
out

outA B

lo lo
lo

lo
hi

hi
hi hi

hi
lo
lo
lo

NOR

outA B

0 0
0

0
1

1
1 1

1
0
0
0

Figure 20: A NOR-gate composed of four MOS-FET transistors. To make
the output hi, both inputs A and B have to be lo to switch on both p-channel
transistors, QpA and QpB. Otherwise the output is lo.

Similar to a NAND-gate, Figure 20 shows a NOR-gate made of four
MOS-FET transistors. When either input A or input B is hi (1), the output
is connected to lo (0). Only if both inputs are low, both n-channel transistors
(QnA and QnB) are switched off, and then both p-channel transistors that
are connected in cascade are switched on and out is connected to hi (1). In
other words, the truth table of this NOR circuit is

NOR

A B Q
0 0 1
0 1 0
1 0 0
1 1 0

)
*

Q

Just like n-input NAND-gates, equally easy is making an n-input NOR-
gate from 2n transistors.

❉

AND and OR gates can simply be made from NAND and NOR gates,
respectively, by placing an inverter at the output, see Figure 21. They thus
consist of 6 transistors each.

Finally, to complete our list of basic binary gates, an XOR gate can be
made of 14 transistors. This is not easy to show, but imagine we start with
the SOP solution,

A⊕B = A·B + A·B

This would imply two inverters, two AND-gates, and an OR-gate, with a
total of 22 transistors. However, as we have seen, this can be converted by
De Morgan’s laws into

4.1. ELECTRONICS: FROM TRANSISTORS TO GATES 75

A
N
D
:

A

B
out

outA B

0 0
0

0
1

1
1 1

0
0
0
1

A

B
out

outA B

0 0
0

0
1

1
1 1

0
1
1
1

O
R

Figure 21: An AND-gate is a NAND-gate with an inverter at the output.
An OR-gate is a NOR-gate with an inverter at the output. Both thus consist
of 6 transistors.

o+,- .
/ /
/
/
2

2
2 2

/
2
2
/

3
4

567

O
R

8

9

:;<

Figure 22: An XOR-gate made from three NAND-gates and two inverters
with a total of 16 transistors.

A⊕ B = (A · B) · (A · B),
two inverters and three NAND-gates, with a total of 16 transistors, see
Figure 22. An XOR-gate is pronounced as ’eks-or’ and not ’ksor’.

Table XX lists the 6 basic gates and the number of transistors each one is
composed of. It is clear that when we can base circuits on NAND-gates and
NOR-gates instead of AND-gates and OR-gates, this will save transistors
and stages in the circuit. This will make them cheaper and faster.

The table also lists the number of layers of transistors each gate consists
of. By this is meant the path with maximum number of transistors from
inputs to output. For example, a NAND gate has 2 layers, because a path
exists from input B to output through 2 transistors (QnB and QnA), and no
longer paths exists. The number of layers determines the switching speed of
the gate. A transistor takes time to switch on or off. This has to do with drift
speeds and diffusion speeds of charge carriers, and while they are different
for electrons and holes, we assume them here the same, for simplicity’s sake.
It is used to make an estimate about the relative speed of our circuits.

It has to be noted that an inverter (NOT-gate) can be made from NAND
or NOR gates by making use of the idempotency rules found as corollaries
of the Huntington postulates. Remember that these tell us that A+A = A
and A·A=A. Thus A = (A+A) = A NOR A, or A = (A · A) = A NAND

76 CHAPTER 4. HARDWARE COMPONENTS

Table XX: Fundamental gates and the number of transistors it takes to
make them and the number of transistor layers it has (CMOS technology).

Gate Number of Number of
transistors layers

NOT 2 1
NAND 4 2
NOR 4 2
AND 6 3
OR 6 3
XOR 16 5
tri-state* +4 +1

*: See Section 4.2

Figure 23: An inverter can be made from a NAND-gate or NOR-gate by
simply linking the two inputs together.

A, see Figure 23. We can also see this in the circuits of NAND and NOR
gates (Figure 19 and 20, resp.); connecting input B to A will make the
two n-channel transistors QnA and QnB equivalent and effectively into a
single transistor, likewise for the two p-channel transistors QpA and QpB.
The gates become double-barreled NOT-gates. This trick does not work
with AND and OR gates. Yet, it does mean that we could have based
our Boolean algebra and Huntington postulates on only NAND and NOR
operations. However, we prefer the Aristotelean approach of NOT, AND
and OR operations, since that is how our mind works. Nature, however,
prefers NAND and NOR gates, since they are much simpler (See Table XX).

4.2 Tri-state

In some cases we do not want the output to be hi, nor lo, but rather for
it to be nothing at all. That is, it should not generate an output at all.
This is especially the case when we have different output devices that all
use the same line of communication, also called a ’bus’. Imagine the data
bus between the CPU (central processing unit) and memory. Sometimes the

4.2. TRI-STATE 77

Figure 24: A NAND-gate with a control circuit allowing for the output to
be in (high-ohmic) tri-state, out = Ω apart from lo (0) and hi (1).

CPU wants to output to the bus – talk – values that will be read by memory
and sometimes the CPU wants to receive data – listen. Putting things on
the bus is achieved by output gates as described above. But it cannot be
that two or more devices output things on the bus at the same time, because
it can cause a short-cut; imagine the CPU writing 0 and memory writing a
1. Current will directly flow from the Vdd power-supply of memory to the
Vss power-supply of the CPU.

To avoid this problem, devices (output gates) can be put in so-called ’tri-
state’, which is neither 0 nor 1. This means they are disconnected from the
power supply altogether and that is achieved by adding two complementary
transistors between the logic gate and the power supplies. Figure 24 shows
an example of a tri-state NAND-gate. When the enable line is lo (0), both
power supply transistors are switched off, and regardless of the input states
A and B of the logic gate, the output is in a non-determined, high-ohmic,
tri-state. Only when the enable input line is high does the output from the
logic gate appear at the output.

Figure 25 then shows how a tri-state bus can be made with this technique.
Many components connected to the same physical line of communication.

tri-state NAND

A B ENABLE Q
0 0 0 Ω
0 0 1 1
0 1 0 Ω
0 1 1 1
1 0 0 Ω
1 0 1 1
1 1 0 Ω
1 1 1 0
Ω: undetermined

78 CHAPTER 4. HARDWARE COMPONENTS

enable

enable

enable

enable

bus

Figure 25: An example of a tri-state configuration. Several gates connected
to the same communication line, also called a ’bus’. Only one component
can be with an enabled output state. All the others must be in high-ohmic
state, or there might occur a conflict, with one component placing a 0 on the
bus and another a 1. There can be only one ’talker’, but many ’listeners’.

4.3 From gates to logic circuits

We can now build more advanced logic circuits based on these simple fun-
damental gates. For that we make use of the algebraic tricks learned in the
previous chapter for finding Boolean expressions of any complezity. SOP,
POS and Karnaugh maps. We start by finding our Boolean expression and
then take an AND-gate for every logic-AND operation and an OR-gate for
every logic-OR operation. Thus, when we look at a truth table and the final
SOP circuit we can see that there is a multi-input AND-gate for the lines in
the table that have an output equal to 1 and then the outputs of all these
first-layer AND-gates are fed into the multi-input-OR-gate to result in the
final output Q. We thus have a layer of AND-gates and a layer of OR-gates:

• In a sum-of-products approach we use an n-input AND-gate for every
line of the truth table that has a corresponding 1 at the output Q,
and then feed the outputs of these gates to a n-input OR port. On
every AND-gate, an input is fed directly into the gate if the value of
the input is 1 and inverted if it is 0. In the truth table we can add
a column with the corresponding boolean expression that implements
that individual line, the so-called min-terms.

An example is the following truth table of a 3-input logic function Q(A,B,C)
given by

4.3. FROM GATES TO LOGIC CIRCUITS 79

A B C Q min

0 0 0 0 A·B·C
0 0 1 0 A·B·C
0 1 0 0 A·B·C
0 1 1 1 A·B·C
1 0 0 0 A·B·C
1 0 1 1 A·B·C
1 1 0 1 A·B·C
1 1 1 1 A·B·C

As an example, the term A·B·C is equal to 1 for – and only for – the input
combination A = 1, B = 0, and C = 0. All other combinations result in
0. The total Boolean function Q is then given by ’summing’ (OR’ing) all
’products’ (and-gate-outputs, min-terms) that are preceded by a Q=1 in the
table. In this case:

Q = A·B·C + A·B·C + A·B·C + A·B·C,

which we can conventionally abbreviated as

Σ(011, 101, 110, 111),

or in decimal form

Σ(3, 5, 6, 7).

The resulting SOP circuit is then shown in Figure 26. Note that these
n-input AND-gates and OR-gates can be constructed from binary 2-input
AND-gates and OR-gates respectively, by placing them in series: A·B·C =
(A·B)·C, etc. Actually, looking again at the basic circuit of a NAND-gate
(Fig. 19), we can see that by adding another p-channel transistor QpC in
parallel to the two existing p-channel transistors QpA and QpB, and an n-
channel transistor QnC in series with the two already there (QnA and QnB),
easily a 3-input NAND-gate can be made from 6 transistors. In this way,
theoretically, n-input NAND-gates can be made, but there is a certain limit
to it.

Finally, remember the De Morgan’s law that stated that the negation of
a product is the sum of negations. This can also be expressed in electronic
form, as is shown in Figure 27. By placing an inverter at the output of every
AND-gate (turning them into NAND-gates) and simultaneously placing a
canceling inverter at every input of the OR-gate, thus having a net zero
total effect, we can use this law to convert the resulting all-negated OR-gate
into a NAND-gate as well. For our circuit it is mathematically

m3 +m5 +m6 +m7 = m3 +m5 +m6 +m7

= m3 ·m5 ·m6 ·m7,

80 CHAPTER 4. HARDWARE COMPONENTS

Figure 26: An example of a sum-of-products approach to find a circuit to
implement any logical function, in this case Q = Σ(3, 5, 6, 7) = A·B·C +
A·B·C + A·B·C + A·B·C. Every line in the truth table with Q=1 results in a
’product’ AND-gate (with those inputs negated that have a corresponding 0
in the input table) that implements a single min-term. The outputs of these
AND-gates are then ’summed’ by an OR-gate.

where each minterm is an AND-operation of a combination of inputs at the
original AND-gate. This will save transistors; as we have seen from Table
XX, NAND-gates contain fewer of them. Our final NAND-only circuit is
shown in Figure 28.

The same function can also be implemented using a product-of-sums
approach. In this case, we use an OR-gate for every line in the truth table
that has an output Q=0, with the signal of an inputs that is 1 inverted. We
use an OR-gate for every Max-term

A B C Q Max
0 0 0 0 (A+B+C)
0 0 1 0 (A+B+C)
0 1 0 0 (A+B+C)
0 1 1 1 (A+B+C)
1 0 0 0 (A+B+C)
1 0 1 1 (A+B+C)
1 1 0 1 (A+B+C)
1 1 1 1 (A+B+C)

As an example, the term A+B+C is equal to 0 for – and only for – the input
combination A=0, B=1, and C=1. All other combinations result in 1. The
total Boolean function Q is then given by ’multiplying’ (AND’ing) all ’sums’
(OR-gate-outputs, Max-terms) that are preceded by a Q=0 in the table:

Q = (A+B+C)·(A+B+C)·(A+B+C)·(A+B+C)

4.3. FROM GATES TO LOGIC CIRCUITS 81

Figure 27: The De Morgan’s laws in circuit form shown here for binary
gates: the negation of a sum is the product of negations (NOS=PON) and
the negation of a product is the sum of negations (NOP=SON). With this we
can convert our sum-of-products (SOP) solution found with the Karnaugh
maps into a NAND-gate only circuit, thus reducing transistors. We simply
insert double negators (NOT NOT X = X) between the layers of the circuits
and use De Morgan’s law to convert the OR-NOT at the second layer into
a NAND. Likewise, a product-of-sums (POS) solution can be converter to a
NOR-gate only circuit.

82 CHAPTER 4. HARDWARE COMPONENTS

=>

?
?
?
?

@

?

E
?

E

?
?
?
E

H I

J

K

L

?

?
E

E
E
E
E
E

?

E
?

E

?
E
E
E

?

?
E

E

M

N

O

P

Figure 28: The circuit of Fig. 26 with the gates all converted into NAND-
gates using the De Morgan’s law.

which we can conventionally abbreviated as

Π(000, 001, 010, 100),

or in decimal form

Π(0, 1, 2, 4).

This abbreviation can be found by indicating the binary values represented
by A,B,C that produce an output equal to 0 (C is the least significant bit).
The resulting circuit is now given by Figure 29. Note that these n-input OR-
gates and AND-gates can be constructed from binary 2-input OR-gates and
NAND-gates respectively, by placing them in series: A+B+C = (A+B)+C,
etc.

Also this circuit can be simplified using the De Morgan’s law that stated
that the negation of a sum is the product of negations (see Figure 27). By
placing an inverter at the output of every OR-gate (turning them into NOR-
gates) and simultaneously placing a canceling inverter at every input of the
second-layer AND-gate, thus having a net zero total effect, we can use this
law to convert the resulting all-negated AND-gate into a NOR-gate as well,
see Figure 30.

M0 ·M1 ·M2 ·M4 = M0 ·M1 ·M2 ·M4

= M0 +M1 +M2 +M4,

where each Maxterm is an OR-operation of a combination of inputs at the
original OR-gate. Again, this will save transistors, as we have seen from
Table XX that NOR-gates contain fewer of them.

4.3. FROM GATES TO LOGIC CIRCUITS 83

Figure 29: An example of a product-of-sums approach to find a cir-
cuit to implement any logical function, in this case Q=Π(0, 1, 2, 4) =
(A+B+C)·(A+B+C)·(A+B+C)·(A+B+C). Every line in the truth table
with Q=0 results in a ’sum’ OR-gate (with those inputs negated that have a
corresponding 1 in the input table) that implements a single Max-term. The
outputs of these OR-gates are then ’multiplied’ by an AND-gate.

RS

T
T
T
T

U

T

V
T

V

T
T
T
V

W X

Y

Z

[

T

T
V

V
V
V
V
V

T

V
T

V

T
V
V
V

T

T
V

V

\roduct of sums:

(NOR-only)

0

1

2

4

Figure 30: Circuit of Fig. 29 with the gates all converted into NOR-gates
using the De Morgan’s law.

84 CHAPTER 4. HARDWARE COMPONENTS

4.4 Karnaugh maps in electronics

The task of an engineer is to both minimize the number of transistors and
the number of steps in an electronic circuit. The latter because every step
causes a delay in the output; for physical reasons of charge-carrier diffusion
times, etc., a transistor takes time to ’process’ the input information and
generate a state at the output. The transistor at the next stage can only
start processing when its input signal is ready and stable at the output of
the previous stage. We must thus reduce the number of stages. The reason
for reducing the number of transistors is obvious, since it will directly lower
the size of the final circuit and thus its cost.

The first step of simplification was found in the previous section. By
using the De Morgan’s law we could convert circuits to NAND-gate-only
and NOR-gate-only circuits that have fewer transistors. In the chapter on
Boolean algebra we have seen how the original SOP and POS expressions
can be simplified by the use of Karnaugh map. To give an example how this
works in electronics,

Q = A·B·C + A·B·C

The distributive law tells us that this is equal to

Q = (A+A)·B·C

and the expression inside the parentheses is equal to the element 1. Thus

Q = 1·B·C = B·C.

We have thus completely eliminated signal A from the circuit! This very
much simplified the final circuit. The beginning expression had 4 AND-
gates and an OR-gate. The final expression can be made with only one
AND-gate.

The final Karnaugh map looks like this:

So that the original expression

Q = A·B·C + A·B·C + A·B·C + A·B·C

is reduced to

4.5. TIMING; TRANSIENT BEHAVIOR. GLITCHES AND HAZARDS85

Figure 31: Circuit of Fig. 29 optimized using a Karnaugh map and the de
Morgan’s laws.

Q = A·B + A·C + B·C,

5 gates instead of 11. That can further be reduced using De Morgan’s laws.
The final circuit is shown in Figure 31 and has only three 2-input NAND-
gates (4 transistors each) and a 3-input NAND-gate (6 transistors), giving
a total of 18 transistors. A tremendous reduction.

The recipe for designing any logic function is the following:

1. Draw the truth table on basis of the description of it

2. Convert the truth table to the form of a Karnaugh map

3. Join as many 1s together (in a SoP approach) or 0s together
(in a PoS approach). Find the simplified Boolean expression
by at least using every 1 (SoP) or 0 (PoS) once

4. Implement the Boolean expression found above by a layer of
AND-gates followed by a layer of OR-gates (SoP) or by a layer
of OR-gates followed by a layer of AND-gates (PoS)

5. Convert them all to NAND-gates (SoP) or NOR-gates (PoS).

4.5 Timing; transient behavior. Glitches and

hazards

So far we have not talked yet about the timing of circuits. We only looked
at the logic. ”For inputs like this, the output will be like that”, etc. This
is what we call the steady-state behavior. (See Table XXI for a description

86 CHAPTER 4. HARDWARE COMPONENTS

Table XXI: Transient circuit behavior

Steady state
The steady-state of a circuit is the value
of the output after the inputs have been
stable for a long time

Transient
behavior

The transient behavior of a circuit is the
sequence of output values after the in-
puts change until the final steady state

Glitch
A glitch is a short-time value of the
output that is not the (desired) steady
state

Hazard A hazard is the possibility of a glitch

of some timing concepts). We have seen how we can find any logic function
with sum-of-products or product-of-sums method. Moreover, we have seen
how we can use the Huntington postulates to simplify the circuit and made
use of Karnaugh maps to do this rapidly.

But how does a circuit get to this steady state? Can things go wrong?
Ideally, we would like the output to change once to the final value after
a certain amount of time (and ideally this should be as short as possible).
However, in the transient behavior there can be so-called glitches, temporary
values that are not the initial nor the final value. Imagine we change the
inputs of a circuit that is in a steady-state 0 in such a way that the new
steady-state logic value will also be 0, but temporarily it will be 1. This is a
’glitch’. It might be not bothering us, but it might also mess up the signal
processing somewhere down the line, and we need to address this problem.
When a glitch has the possibility to occur it is called a ’hazard’.

A static-1 hazard is defined by two input combinations X and Y such
that

• X and Y differ by only one input variable

• X and Y both produce a logic 1 at the output in steady-state

• Momentarily a 0 may appear on the output.

In other words, a static-1 hazard is a possibility of a 0 glitch. Likewise, a
static-0 hazard is defined by two input combinations X and Y such that

• X and Y differ by only one input variable

• X and Y both produce a logic 0 at the output in steady-state

• Momentarily a 1 may appear on the output.

4.5. TIMING; TRANSIENT BEHAVIOR. GLITCHES AND HAZARDS87

x

y

y

0
0
1
1

z B

out

]^_ ` defez

g

x

0
0
0
0

0
0
1
1

h
0

0
1

1
0

0
1

1

1
1
1
1

j
0

0
0

0
0

1
0

1

B

0

0
1

0
0

0
1

0

out

0

0
1

0
0

1
1

1 klkmknp

qlnpy

y

y

g

B

out

smnmkrtu vpkmrw
y{
|
}
~�
�
}
�
�
�
�
|
�
��
{

|
~~
�
�
�}
�
�
}
��
��
�

�}
�
�
{�
�
{
�
|
~
�
�
�|
� :

xx

y

y

���

0

0

10

0

1

11
������� ����

���������

wnhn�d

j���

���h

Figure 32: A circuit with a static-1 hazard. A hazard exists when two AND
gates in the first layer are touching, but not overlapping in the Karnaugh
map.

In other words, a static-0 hazard is a possibility of a 1 glitch.

These hazards exist because the AND-gates in a sum-of-products or the
OR-gates in a product-of sums have their result ready at their outputs at
different times. Maybe because they are not completely identical, or because
these components at the first layer of the circuitry have additional inverters
at their inputs. A classic example of a hazard is the circuit shown in Figure
32, it implements the logic function F = xy+yz through a sum of products.
Note the inverter at the bottom AND-gate. In this circuit, AND-gate A
receives x and y, and AND gate B receives z and y. This last y is produced
by an inverter, and this inverter is made of two transistor that, apart from
inverting the signal, also causes a small delay. That means that y is not at
all times the inverse of y. There can be transitory moments in which they
are the same, and that causes the glitch. Imagine we are in a steady-state
with x = y = z = 1, and thus out = 1, see the truth table in Figure 32.
When the input y changes from 1 to 0, both A and B switch; A goes from
1 to 0 and B switches from 0 to 1 (see the initial and final states indicated
in the truth table). However, AND-gate A switches slightly earlier than
AND-gate B, and temporarily there is a situation in which both AND-gates
output 0, and the final output will temporarily be 0, before it settles again
at the final steady-state 1. In effect, what happens is this sequence if we
assume all other gates (A, B and out) are instantaneous:

88 CHAPTER 4. HARDWARE COMPONENTS

Table XXII: Transient truth table with all inputs at the AND gate. In this
table y=y=0 can occur causing a static-1 0-glitch.

x y z y A B out state
xy yz A+B

0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 1 1
0 1 0 0 0 0 0
0 1 0 1 0 0 0
0 1 1 0 0 0 0
0 1 1 1 0 1 1
1 0 0 0 0 0 0
1 0 0 1 0 0 0
1 0 1 0 0 0 0 0-glitch
1 0 1 1 0 1 1 final
1 1 0 0 1 0 1
1 1 0 1 1 0 1
1 1 1 0 1 0 1 initial
1 1 1 1 1 1 1

state x y y z A B out
xy yz A+B

initial 1 1 0 1 1 0 1
intermediate 1 0 0 1 0 0 0 glitch
final 1 0 1 1 0 1 1

In effect, physically we have the transient truth table of Table XXII, where
illogical but physically possible transitory states (y=y) are also included.

This transient behavior with a static-1 0-glitch is shown in the picture
and is caused by the situation where both y=0 and y=0. When we look at
the Karnaugh map, we see that it occurs when we get a transition from two
distinct loops in the Karnaugh map (two different AND-gates producing
a 1). One loop feeding an AND-gate is implementing A=xy and another
loop is implementing B=yz. The glitch occurs when we go from one loop
to another by switching from y=1 to y=0, implying going from AB=10 to
AB=01. A glitch occurs when two or more AND-gates switch and a single
of those AND-gates switching would temporarily cause an output 0.

To avoid this from happening, we add redundancy with a third product
loop (AND-gate C=xz) that connects the two loops, F = xy+yz+xz. As can
be seen from the physical, transient, truth table of Table XXIII, the glitch

4.6. LATCHES, FLIP-FLOPS AND MEMORY 89

Table XXIII: By adding another loop in the Karnaugh map, adding another
AND-gate at the first layer of the SOP circuit, the 0-glitch can be eliminated.
Even if y=y=0 occurs, this causes no static-1 0-glitch.

x y z y A B C out state
xy yz xz A+B+C

0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 1 0 1 0 1
0 1 0 0 0 0 0 0
0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 0
0 1 1 1 0 1 0 1
1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 1 0 0 0 1 1 no glitch!
1 0 1 1 0 1 1 1 final
1 1 0 0 1 0 0 1
1 1 0 1 1 0 0 1
1 1 1 0 1 0 1 1 initial
1 1 1 1 1 1 1 1

has been eliminated and the resulting circuit (Figure 33) is hazard free.
Note that there are no static-0 1-glitches in sum-of-products circuits.

That it started at zero, winds up in 0, but temporarily has a 1 as output.
That is because each AND-gate can only change once. So, when a specific
AND-gate changes from 0 to 1 output (and thus possibly changing the final
output in the sum to 1), the AND-gate can never switch back and then the
output can never go back to 0, so it was not a static-0 state after all. The
reader can easily verify this in the physical truth table above.

In a similar way we can address problems of static-0 1-glitches in product-
of-sums implementations.

4.6 Latches, flip-flops and memory

By adding feedback to the circuits we can turn them into memory elements.
That is, the output state no longer only depends on the input signals, but
also on the history of the state. An example is the simple circuit called a
latch that consists of two NOR-gates with the output of each serving as one
of the inputs of the other, see Figure 34. When the input combination is

90 CHAPTER 4. HARDWARE COMPONENTS

x

y

� B

out

��� � ¡¢¡�¢ �£

y
xx

y

y

¤¤¤

0

0

10

0

1

11

¥

¦§¨©
ª§¨«

¬§«©

Figure 33: The circuit of Figure 32 made hazard-free by adding another
product loop (C=xz) in the sum. In the Karnaugh map is is visible as
overlapping the loops that caused a hazard by a new loop.

Q

R
Q

_

Q® R

0 0
0

0
1

1
1 1

Q
0
1
¯°±

®°²-latch

Figure 34: A set/reset (S/R) latch composed of two NOR-gates with
feedback.

SR=10, the output is always Q=1, independent of what Q was before, and
when the input is SR=01, the output is always Q=0.

S/R-latch

S R Q
0 0 Q keep
0 1 0 reset
1 0 1 set
1 1 N/A not allowed

This thus ’writes’ the state of the latch and for this reason we have conve-
niently labeled the input terminals (instead of A and B) S and R, because
a 1 on these terminals sets to 1 and resets to 0 the output Q, respectively.
However, when the input combination is SR=00, the output depends on
what the state was before; if it was Q=0, it stays Q=0, and if it was Q=1,
it stays Q=1, as the reader can easily verify: The state SRQQ = 0010 is
stable, as well as the state SRQQ = 0001. In all cases is the output of the
sibling NOR-gate the opposite. Note also that the input combination SR =
11 is not allowed (N/A), since it results in an invalid state (Q=Q=0).

We call this circuit a set/reset (S/R) latch. It is a memory element that
can store one bit of information. By the combination SR=01 we can write

4.6. LATCHES, FLIP-FLOPS AND MEMORY 91

³
Q

R

Q

_

Q´ R

0 0
0

0
1

1
1 1

Q
0
1
µ¶·

¸¹º»¼ ´¶½¾¿¹ºÀÁ

ÂÃÄ

À¿Å

1
1
1
1

0 x x Q
Æ

R

Q

Q
_ÇÈÉ

Figure 35: A gated S/R-latch made of a S/R-latch by adding AND ports
at the entrance. This way, the state of the latch can only change when the
clock is high. ”N/A” means not allowed.

a 0 in this memory and by the combination SR=10 we can write a 1. In the
case of SR=00 we keep the memory (and only ’read’ the output Q).

In most cases, we want synchronized components. That means that
states can only change synchronously with a clock pulse. Following the same
reasoning we can build a gated S/R-latch AND’ing the set/reset signals with
the clock before they are fed into the NOR-gates, see Figure 35. This way,
the state of the latch can only change when the clock pulse (clk) is high,
otherwise the state will keep its actual state Q, since both signals fed to the
NOR-pair are 0.

Flip-flops are very similar to latches, but they rather respond to transi-

tions of states (especially the clock) rather than the states themselves. For
engineers this is much better, because it is much more clear when the ac-
tions take place. The way this is done is by making use of the delay every
electronic component causes. When we AND a clock signal with its inverted
(and thus delayed) self, a very narrow pulse results, see Figure 36. If the
width is very small, we can represent this by saying that the circuit responds
to the edge of the clock pulse, also called ’edge-triggered’. This is indicated
by an arrow in the bottom figure. Similarly to this rising-edge-triggered
circuit we can make a circuit for falling-edge-triggered responses.

In this book no distinction will be made from now on; all latches de-
scribed in this work are in fact implemented as edge-triggered flip-flops. A
clock signal enters a circuit through such a pulse-generating gate as shown
in Figure 36. We use synchronous components, and only come back to asyn-
chronous circuits in the last chapter.

The problem with the S/R-latches and flip-flops is that they have a non-
allowed input combination SR=11 that can put the latch or flip-flop into
a non-determined state. An engineer’s nightmare! To avoid this problem
so-called J/K flip-flops were invented. It contains another feedback loop to
the clock-gate. This circuit works the same as a S/R flip-flop, but it has
no problem with a JK=11 combination. This input combination actually
inverts the output: Q→Q. Figure 37 shows the electronics of a J/K edge-
triggered flip-flop and its simplified representation that we will use in this

92 CHAPTER 4. HARDWARE COMPONENTS

Figure 36: A short pulse version of the clock signal can be made by AND’ing
it with its own inverted signal. Because the inverter also introduces a short
delay, the resulting output is a pulse with a width equal to the delay. If the
width is very small, we can represent this by saying that the circuit responds
to the edge of the clock pulse, we call this edge-triggered. This is indicated
by an arrow in the bottom drawing.

Ê
Q

Ë
Q

_

clk

ÌÍÎ-flip-flop

QÌ Î
Ï Ï
Ï
Ï
1

1
1 1

Q
0
1
Q

J

K

Q

Q
_clk

Figure 37: A J/K edge-triggered flip-flop, a basic ingredient of digital
systems. The (positive-flank) edge-effect is indicated by an arrow in the
clock pulse and by a triangle at the clk input in the final symbol of the
component.

book. The truth table of the J/K latch (without the clk) is given by:

J/K latch

J K Q
0 0 Q keep
0 1 0 reset
1 0 1 set
1 1 Q invert

From the J/K flip-flop we can make two interesting derivatives. The first
one is made by linking the J and K inputs together and calling it T. This
stands for ’toggle’, as it toggles the output Q→Q upon receiving a clock
pulse with a 1 at the T input. The other device is with the K input of the
J/K flip-flop the inverse of the J input. In this case, the truth table shows
us that the output is equal to the input, now called D for ’data’ (or delay),

4.6. LATCHES, FLIP-FLOPS AND MEMORY 93

Figure 38: T(oggle) and D(ata) flip-flops.

when a clock pulse is received. See Figure 38. We will use the symbols for
these flip-flops from now on.

When a bit of information is placed on the D-line, this will be copied into
the memory when a clock pulse (clk) is received (and be ready on the output
Q). We can already recognize here a classical computer memory element. In
fact, so-called registers of computers work in this way by being a set of D
type flip-flops. The simple truth tables of toggle (T) data (D) flip-flops are:

T flip-flop

clk T Q
0 0 Q
0 1 Q
1 0 Q
1 1 Q

D flip-flop

clk D Q
0 0 Q
0 1 Q
1 0 0
1 1 1

Finally, Figure 39 shows a so-called master-slave flip-flop. It consists of
two gated S/R latches, fed back in a J/K configuration. When the clock is
rising, the master S/R latch is enabled and its signal set according to the
J/K and Q signals. It is, as it were, transparent. The second S/R latch,
however is disabled by the inverted clock. at the falling edge of the clock the
first S/R latch is stable at its output value and no longer responds to J/K
input changes. The slave S/R latch is now transparent and lets through the
output of the master S/R latch. So, the state as it were ripples through the

94 CHAPTER 4. HARDWARE COMPONENTS

S

Q

R

Q

_

clk

J

K Ð

Ð
_

Ñ

Ò

ÐÓÔÕÖ× ÑØÓÙÖ

clk
_

Figure 39: A master-slave J/K flip-flop. If the clock is high, the J/K
signals reach the gated master S/R latch and the master (M) signal is set
accordingly. These are fed to the gated slave S/R latch, but do not arrive
there because the slave S/R latch is disabled by the inverted clock. When the
clock is changed from 1 to 0 this slave latch now processes the signals coming
from the (now) stable master latch and a the output (Q) is set accordingly.
The feedback from final output (Q, Q) to input give it a J/K behavior (with
J=K=1 allowed). The M/S flip-flop eliminates race conditions.

M/S S/R latch. At the rising edge it passes the first stage and at the falling
edge it passes through the second stage. The advantage of this over a normal
J/K flip-flop is that so-called race conditions cannot occur. This can occurs
when J=K=1 and the output will toggle, Q→Q. But if the active time is
long enough it can toggle back to the original state. It can actually oscillate
at high frequency, something that is normally unwanted. To prevent this, a
master/slave set/reset edge-triggered flip-flop can be used.

The important question for what is coming next is, on basis of the truth
tables of the flip-flops or latches, not how the output states change when
signals are applied to it at the input, but rather the reverse: if we want to
change the output from one state to another, how do we do that? What
excitation signals do we need to supply at the inputs to achieve the desired
output states or changes thereof? As an example, if we have an S/R flip-flop
and its (output) state is 0, how do we change it to the state 1. Looking at
the S/R truth table, we can easily see that we have to supply a SR = 10
combination. Keeping the state at 0 can be achieved in two ways: either
keep the 0 state by SR = 00, or write a ’new’ 0 into the S/R memory latch
by SR = 01. In other words, we have to supply SR = 0x to go from state 0
to state 0 (written as 0→0). The truth table for S/R latches and flip-flops
is thus

4.7. FINITE-STATE MACHINES (FSMS) 95

old new Action
Q S R Q Q → Q
0 0 0 (keep) 0 0→ 0
0 0 1 (reset) 0 0→ 0
0 1 0 (set) 1 0→ 1
0 1 1 (N/A)
1 0 0 (keep) 1 1→ 1
1 0 1 (reset) 0 1→ 0
1 1 0 (set) 1 1→ 1
1 1 1 (N/A)

which can be summarized by the following ’excitation table’:

Action Excitation

Q → Q S R
0→ 0 0 x
0→ 1 1 0
1→ 0 0 1
1→ 1 x 0

(where x means ’don’t care’). The excitation tables for all types of flip-flops
and latches used in this book are given in Table XXIV.

4.7 Finite-state machines (FSMs)

The next step in slowly assembling a computer architecture is joining these
memory elements just described to logic circuits described earlier. This
results in a so-called finite-state machine, see Figure 40. It consists of two
parts, a logic array and memory elements. The former have outputs that
only depend on its inputs. The latter stores the state of the machine. These
states are then also used as input in the logic array (without this closing of
the circle, the saving of the state would be rather useless, as useless as write-
only memory). Whereas all states have to be used as input, not all inputs
of the logic array are necessarily coming from the memory elements. Some
can come from other sources (maybe a keyboard, or an Internet connection).
Moreover, not all states are necessarily also output states, ans not all output
states are necessarily also saved in memory. Although, it is obvious that at
least one output has to come out of the logic array; a computer that is not
communicating its computed result is also rather useless.

In summary, we can imagine the following finite-state machine (FSM):

• A FSM with a inputs, b outputs and 0 memory elements is simply
a logic array, composed of a logic circuit that can be designed with
fundamental gates using the techniques described before, including

96 CHAPTER 4. HARDWARE COMPONENTS

Table XXIV: Excitation tables for various types flip-flops. ’x’ means don’t
care.

Action Excitation

Q S R J K T D
0→ 0 0 x 0 x 0 0
0→ 1 1 0 1 x 1 1
1→ 0 0 1 x 1 1 0
1→ 1 x 0 x 0 0 1

a m b
a m - Berkeley machine*
a - b Boole machine
- m b Moore machine/sequencer
a m b Mealy machine
*: nonsense

Figure 40: A finite-state machine (FSM) consists of a logic array (with
b outputs only depending on its a and m inputs) and m memory elements
that save the state of the machine.

Karnaugh maps, etc. We can call it a Boole machine since it follows
simple Boolean logic.

• A FSM with a inputs, 0 outputs and m memory elements does not
make sense. We can call it here a Berkeley machine. (Berkeley was
the philosopher that said that the chair he left in the next room does
no longer exist because it was not observed).

• A FSM with 0 inputs, b outputs and m memory elements is a sequencer;
every time a clock pulse is received, new output and memory states
are calculated on basis of the previous state of the machine. This is
called a Moore machine.

• A general FSM with a inputs, b outputs and m memory elements is
called a Mealy machine.

4.7.1 Moore machine sequencers

Let’s take a look at some examples. The Boole machine (logic only) has al-
ready been dealt with in the previous sections, so we start here with a Moore

4.7. FINITE-STATE MACHINES (FSMS) 97

machine sequencer. Imagine we want to make the sequence 01010101010. . . ,
inverting the output at every rising clock pulse. How do we do that? With
some thinking, the reader is probably capable of coming up with this very
simple solution:

That was too easy! Let’s try something more difficult. What if we want
to make a three-bit counter, 000 → 001 → 010 → 011 → 100 → 101 →
110→ 111→ 000 We first recognize that the output and the state are
equal, so m = b in the finite-state machine picture. We need three memory
elements. Let’s call them FF2, FF1 and FF0, with ouputs Q2, Q1 and Q0,
each saving a bit of the output (with FF0/Q0 the LSB). The first step is
now to make a list of possible states and at each state the next desired state
(a transition table), and thus a ’what to do’ (an action table). In this case
it is very simple:

Transition table Action table
Current state Next state What to do?/Action

Q2 Q1 Q0 Q2 Q1 Q0 Q2 Q1 Q0
0 0 0 0 0 1 0→ 0 0→ 0 0→ 1
0 0 1 0 1 0 0→ 0 0→ 1 1→ 0
0 1 0 0 1 1 0→ 0 1→ 1 0→ 1
0 1 1 1 0 0 0→ 1 1→ 0 1→ 0
1 0 0 1 0 1 1→ 1 0→ 0 0→ 1
1 0 1 1 1 0 1→ 1 0→ 1 1→ 0
1 1 0 1 1 1 1→ 1 1→ 1 0→ 1
1 1 1 0 0 0 1→ 0 1→ 0 1→ 0

We now need to select our hardware. From experience, for example the
simple 1-bit sequencer above, we decide for T-type flip-flops. The truth table
of this flip-flop we have to translate into an excitation table – an ’how-to-do’
– because we have to find out how to change the output bits. So, we get the
following excitation table based on the T-type flip-flop truth table of page
93, which was also part of Table XXIV:

Action Excitation
Q T

0→ 0 0
0→ 1 1
1→ 0 1
1→ 1 0

98 CHAPTER 4. HARDWARE COMPONENTS

(The excitation tables for all flip-flops are shown in Table XXIV).
On basis of this we design for each output bit T-type flip-flop the logic cir-

cuit to supply the correct input signal based on the current state (Q2,Q1,Q0).
In other words, for each flip-flop we design a logic circuit with three inputs
– Q2, Q1 and Q0 – and one output. As an example, for Q0 we have

Current state Action Excitation
(What to do?) (How to do it?)

Q2 Q1 Q0 Q0 T0
0 0 0 0→ 1 1
0 0 1 1→ 0 1
0 1 0 0→ 1 1
0 1 1 1→ 0 1
1 0 0 0→ 1 1
1 0 1 1→ 0 1
1 1 0 0→ 1 1
1 1 1 1→ 0 1

Let’s do this for all flip-flops:

Current state Action & Excitation

Q2 Q1 Q0 Q2 T2 Q1 T1 Q0 T0
0 0 0 0→ 0 0 0→ 0 0 0→ 1 1
0 0 1 0→ 0 0 0→ 1 1 1→ 0 1
0 1 0 0→ 0 0 1→ 1 0 0→ 1 1
0 1 1 0→ 1 1 1→ 0 1 1→ 0 1
1 0 0 1→ 1 0 0→ 0 0 0→ 1 1
1 0 1 1→ 1 0 0→ 1 1 1→ 0 1
1 1 0 1→ 1 0 1→ 1 0 0→ 1 1
1 1 1 1→ 0 1 1→ 0 1 1→ 0 1

We can find the circuits for these three excitation signals T0, T1 and T2,
using Karnaugh maps:

So we can design the circuits:

• T0 is connected to logic 1

4.7. FINITE-STATE MACHINES (FSMS) 99

T0 Q0

Q0
_

clk

T1 Q1

Q1
_

ÚÛ Q2

Q2
_

1

ÜÜÝ ÜÜÞ ÜÜß

Figure 41: A three-bit synchronous counter as an example of a Moore
machine sequencer. The 3-bit output sequence is Q2,Q1,Q0 = 000 → 001
→ 010 → 011 → 100 → 101 → 110 → 111 → 000

T0 Q0

Q0
_

clk

T1 Q1

Q1
_

àá Q2

Q2
_

1 1 1

ââã ââä ââå

Figure 42: The asynchronous equivalent of the counter of Figure 41. Here
the flip-flops have different clock signals.

• T1 is connected to the output Q0 of flip-flop FF0

• T2 receives a signal from the outputs of Q0 and Q1 AND’ed.

This results in the final circuit shown in Figure 41. Note in this circuit that
all flip-flops receive the same clock signal. We call this a synchronous circuit.
The asynchronous equivalent, with the flip-flops have different clock signals,
is given in Figure 42.

exercise: 3-bit counters

Design 3-bit counters (counting cyclic 0 to 7) that use D-type flip-
flops and J/K-type flip-flops.

The recipe for designing a finite state Moore machine is the following:

1. Draw the transition table with columns for ’current state’ and
’next state’

2. Add columns for the actions to be taken at each state to go to
the next state

3. Chose the hardware, the type of flip-flop to use. One flip-flop

100 CHAPTER 4. HARDWARE COMPONENTS

for every bit of status. Draw the flip-flops as the basis of the
circuit

4. Separately write down the truth table of this type of flip-flop
and translate this into an excitation table for that hardware,
what pulses to give at the input terminals to cause the desired
states at the output terminals

5. With the above hardware excitation table, translate the actions
to be taken into excitations to be supplied at each ’current state’

6. With the help of Karnaugh maps find the Boolean expressions
of the above excitations as functions of variables of the ’current
state’

7. Add the SoP or PoS logic gates found from the expressions
above to the circuit.

4.7.2 Mealy machines

As written before, Mealy machines differ from Moore machines in that they
have, apart from the state and output, also input lines. In this case we
start by designing a state diagram. It consists of first writing down all
possible states, identifying how many there are and then attribute memory
elements and values to them, and their associated outputs (if different from
the memory state). We then write these in circles and connect them by
arrows that show the input a that is needed to bring the machine from one
state to another. Since Moore machines is a subset of Mealy machines, we
can also do this for the former, with the ’input’ merely the clock signal. Take
as an example our 3-bit counter. A Mealy machine state diagram would be:

000

001

010

011

100

101

110

111

(clk)

(clk)

(clk)

(clk)(clk)

(clk)

(clk)

(clk)

stateinput

input

The clock signal is assumed implied and will not be shown anymore. From
now on, all circuits are synchronous and take clock signals.

More interesting are Mealy machines that do take regular input. Take
for example a circuit that checks the parity of an input string of bits, i.

4.7. FINITE-STATE MACHINES (FSMS) 101

Parity is the number of 1s in a string, specifying whether it is odd or even.
Analyzing this, we see that it has two possible states: ’odd’ and ’even’; the
number of 1s until now. Two possibilities, so a single bit is sufficient to store
the state. We decide that ’even’ = 0 and ’odd’ = 1. We also decide to take
this as our output bit Q and will use a single flip-flop FF. So, we have a = 1
input bits, b = 1 output bits and m = 1 states (equal to the output, m = b).
Moreover, if the number of bits until now is odd (Q=1), and we receive an
i=1, we have to change the parity state to Q=0, etc. Let’s first make the
state diagram:

Note the state in the circles and the input values i at the arrows. Now we
can make an action table (with output equal to state):

Current Input Next Action
state state

Q i Q Q → Q
0 0 0 0 → 0
0 1 1 0 → 1
1 0 1 1 → 1
1 1 0 1 → 0

This looks very toggl’ish, so we decide for a T-type flip-flop, and we translate
the action table into an excitation table:

State & Input Action Excitation

Q i Q → Q T
0 0 0 → 0 0
0 1 0 → 1 1
1 0 1 → 1 0
1 1 1 → 0 1

The Karnaugh map:

And we see that simply the input of the T-type flip-flop is directly connected
to the input signal:

102 CHAPTER 4. HARDWARE COMPONENTS

T Q

Q
_clk

i
æççææçæççæææçæèèè

parity

exercise: Parity checker

Exercise: Design a parity checker that uses D-type flip-flops or J/K-
type flip-flops.

Let’s take a look at another example. Slightly more complicated, as we
will see, because the output is not the same as the state and we thus need
separate hardware for it. We are talking here about an edge detector. It
will output a 0 if the incoming bit is the same as the previous bit and a 1 if
it is different.

in:0011000111010000111...

out:0010100100111000100...

At the first transition from 0 to 1, it will output a 1, but then with the next
1, no change took place and the output is 0. Etc.

First we have to make a state diagram. Looking at the description, we
recognize we have to store one bit of information, namely the value of the
previous bit in the string. This bit of information can have two states (0
and 1), so we need one flip-flop to store it. We then proceed in determining
how each state is linked to other states by what input i. The resulting state
diagram is given by,

i=0,o=1

0 1

i=1,o=1

i=0, i=1,
o=0 o=0

Note that the output is not equal to the final state (nor of initial state) and
we thus need separate hardware circuit for it. Looking at the state itself,
it is clear that the state is actually equal to the input. That looks very
data’ish, so we select a D-type flip-flop for our state. And we can then make
an action table (pro forma, because we already now that it will be equal to
i, but let’s just do all steps of this tango):

Current Input Next Action Excitation
state state

Qn i Qn+1 Qn → Qn+1 D
0 0 0 0 → 0 0
0 1 1 0 → 1 1
1 0 0 1 → 0 0
1 1 1 1 → 1 1

4.7. FINITE-STATE MACHINES (FSMS) 103

Note that we have distinguished here explicitly the previous or current state
(Qn) from the next state (Qn+1) for reasons that will be clear in a moment.
The Karnaugh map for the logic array of D depending on Qn and i is given
by,

i

i 00

11

D: n n

And we see that indeed simply the input of the D-type flip-flop is directly
connected to the input signal i. For the output we need a different circuit.
By looking again at the state diagram, we find that the simple truth table
(not by an excitation analysis, since no state changes are involved) is given
by,

Current Input Output
state

Qn i o
0 0 0
0 1 1
1 0 1
1 1 0

and the Karnaugh map

1

Qn

i

i 0

0 1

Qno:

n⨁i

We see that the output is Qn XOR i. We could now think we can simply
use the output of the state D flip-flop and use it together with the i line in
an XOR gate to produce the output. However, the output of the D-type
flip-flop taken as input to the XOR gate will not be the previous state Qn

that we needed, but actually is the next state Qn+1 instead. Our XOR gate
processes the wrong state in its calculation of the output. (I leave it to the
reader to determine what the output will be). To overcome this problem,
we can make use of master-slave flip-flops; one for the internal state Q and
the other buffering our output o. At the time of a rising edge of the clock

104 CHAPTER 4. HARDWARE COMPONENTS

é êë

êë
clk

i
0011000111010...

é Q2

Q2
_

⨁

clk
clk

MS

MS

ìíîìn ìíîìïðñ

o

Figure 43: An edge-detector circuit based on two master-slave D flip-flops.

pulse both the output and the next state are calculated on basis of Qn. The
full edge-detector circuit is thus given in Figure 43.

We can actually already here see for the first time our higher level knowl-
edge emerging. A memory element like Q is similar to a variable in program-
ming, and the logic array is like the branching instructions (’if’). Imagine
we’d have to write a C program that has the above functionality, it would
be something like this:

int i, q = 0;

while (1){ // forever

scanf("%d", &i); // read bit from input stream

printf("%d", q ^ i); // output o = q xor i

q = i; // save state

}

We already get here our first hint of the link between programming and
hardware.

4.8 Exercises

exercise: Shakespeare

0: Answer Shakespeare’s famous question: ”To be or not to be, that
is the question”. Show that the answer is ”true”. Answer at end.

exercise: Priority line

1: A circuit has 4 inputs, I3. . . I0. The 2-bit output (O1,O0) of the
circuit is the binary representation of the highest input with a 1. For
example, O1,O0=10 indicates that I2 is the highest input with a 1,

4.8. EXERCISES 105

so I3=0, I2=1, I1=x, I0=x (x is ’don’t care’). Implement the circuit
with only NAND-gates.

exercise: Gray-code converter

2: Design a circuit which converts a number of 3 bits
a) from binary to Gray code
b) from Gray code to binary.
Use only XOR-gates.

exercise: Multiplexer logic

3: A multiplexer (’MUX’, see also p. 117) copies the data at an input
line Di, selected by the ’address’ lines S, to the output. A MUX with
n select lines can be used to realize any logical function with n + 1
input variables. For example, a MUX with two selector lines, S1 and
S0 (see below), can implement any three-input logic.
Design a circuit based on a multiplexer that implements the logic
function F (a, b, c) = Σ(2, 3, 5, 6).

òó

ôõ ôö

M
÷
ø

out

òö

òõ

òù

Hint:connectatoS1,andbtoS0.Writethetruthtable.

exercise: 2-bit binary counter

4: Design a 2-bit binary counter, 00→ 01→ 10→ 11→ 00 . . .,
a) with SR flip-flops
b) with JK flip-flops.

exercise: Synchronous 3-bit Gray-code counter

5: Design a synchronous 3-bit counter in Gray code. Use flips-flops
of your choice.

106 CHAPTER 4. HARDWARE COMPONENTS

exercise: Modulo-10 binary counter

6: Design a modulo-10 binary counter (0. . . 9), 0000 → 0001 →
. . . 1001→ 0000

exercise: Clock

7: Imagine a chip with a modulo-16 counter (0. . . 15; 4 bits output)
and an active-low RESET.

clk

Mod
16

O3 (0/8)

O2 (0/4)

O1 (0/2)

O0 (0/1)RESET

On basis of such chips, design an (asynchronous) clock with (24)
hours, (60) minutes, and (60) seconds.

exercise: Railroad junction

úû

úü

ýü

ýû

8: At a junction, two railroad tracks join into one. Hundreds of
meters before the junction there are two sensors, S1 and S2 which
detect the passing of a train. Just before the junction are two signal
F1 and F2 (0=red, 1=green). Only one train can pass; after one has
passed the other has to wait (forever).
Design the state diagram, make a table and simplify it. Design the
control circuit based on D-type flip-flops.

exercise: Elevator

9: A building has three floors and an elevator. Each elevator door
has a button to call the elevator (C0, C1, C2). Assume that only

4.8. EXERCISES 107

one button may be pressed at any time. The outputs are the motor
state M (on/off) and the motor direction D (up/down). Analyze
the problem and design the state diagram, and on basis of that the
circuit.

exercise: Lock

10: A door has an electronic lock with a decimal keyboard. The
code 3285 opens the door. The control circuit returns to its initial
state after opening the door or when the introduced code starts being
wrong. Analyze the problem and draw the state diagram.

2B

true

þÿS�espeare�

5| Integration

It is now time to integrate the digital systems components into a computer.
We will do this here step by step so that one can see what is going on. In
the previous chapter operations consisted of single-bit output functions. In
this chapter we will see how we can join them to form multi-bit hardware.
Then build an architecture around it.

As we are going to do arithmetic calculations it is beforehand important
to make the observation that the calculations are independent of the number

system. A mathematical property of a number is true in any number system.
If a number is odd or even in decimal, it is odd or even in any number
system. A prime number is one that cannot be divided by any integer number
without leaving a remainder. This is true in any number system. Two plus
three equals five in any number system. In decimal it is simply 2+3=5. In
binary it is 10+11=101. Thus, to do calculations, we can chose our number
system hardware in which we perform the calculations and then at the end
represent the result in decimal (if it is intended for human reading). Since
digital electronics is binary electronics, the obvious number system is binary.
So, we will now start building a computer based on binary components.
We do that by integration of already known components, like AND-gates,
OR-gates, NOR-gates, NAND-gates, XOR-gates, flip-flops and latches, etc.
Then we will integrate these integrated structures. Every step of integration
will create emergent properties. We start with building a binary arithmetic
circuit from logic gates, the half-adder.

5.1 Half-adder/full-adder

The digital gates in the previous chapter were all logical gates. That means
they follow Boolean algebra, ’logic’. We are often more interested in numer-
ical calculations, as in additions, subtractions, division and multiplications.
In this chapter we will learn how that is done, starting with additions. In
fact, calculations are also expressible in boolean logic. That is because they

109

110 CHAPTER 5. INTEGRATION

A

B
�

c

A

B

c

�
��

H
a
lf
-a
d
d
e
r:

Figure 44: A half-adder calculating the sum (Σ) of two binary 1-bit numbers
(A and B) and a carry (c). Right: equivalent symbol.

are functions with output (bits) depending on the input (bits), and that is
something we know how to deal with.

The simplest addition is one of two binary 1-bit numbers, A + B = C.
There are four possibilities:

0+0 = 0
0+1 = 1
1+0 = 1
1+1 = 0 (plus an ’overflow’; carry)

This overflow we call a carry. Note that these zeros and ones here now
represent 1-bit binary numbers and not voltages or true/false Boolean values
(bits). They are numbers implemented by Boolean logic, implemented in
electronic hardware. So, now we have two output functions of two input bits.
If we represent this in hardware and assign – what seems utterly reasonable
– the number 0 to a 0 bit and the number 1 to a 1 bit we get two logical
circuits implementing two logics. We call these Σ for the sum bit, and c for
the carry bit. The truth table for these two logical functions looks like this:

Half-adder

A B Σ c
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

It is directly clear that the sum bit can be produced by an XOR-gate and
the carry bit c can be generated by an AND-gate, so we wind up with the
circuit for this so-called ’half-adder’ (HA) as shown in Figure 44.

We had left dangling the ternary-logic half-adder problem in Chapter 3,
stating that it cannot be done with ternary-logic gates (only). The solution
is normally to decode the ternary digits (trits) to binary and do the logic in
binary and then at the end encode the result back to ternary. This approach
is presented in Figure 45. That just for curiosity’s sake. The world is using
binary logic, so let’s get back to it. The rest of the book is only about binary
hardware.

5
.1

.
H

A
L
F
-A

D
D

E
R

/
F
U

L
L
-A

D
D

E
R

111

DECH

DECH

HAc

HA�

HAc

ENC

ENC

HA�

DECL

DECL

A B

HAc

HA �

�

c

HA�

0

1

2

0 1 2A
B

HAc

0

1

2

0 1 2A
B

ENC

0

1

2

0 1 2A
B

0*

0 1

2

x x x

x

x

0

0 1

1

x x x

x

x

1

0 0

0

x x x

x

x

DECH

0

1

2

in out

0

0

1

DECL

0

1

2

in out

0

1

0 *:
 x

 a
t

c
a

rr
y
 e

n
c

decoder stage

encoder stage

Ternary-logic half-adder:

Truth tables (x = don't care):

F
ig

u
re

4
5
:

F
or

cu
rio

sity’s
sake

th
e

co
m

m
o
n

so
lu

tio
n

to
a

tern
ary

h
alf-ad

d
er.

T
h
e

lo
g
ic

is
im

p
lem

en
ted

w
ith

(p
seu

d
o
)b

in
ary

lo
g
ic

g
ates

(w
h
ite

b
oxes;

n
o
te

th
e

d
o
n
’t-cares

in
th

e
tru

th
tab

les)
an

d
co

n
vert

to
an

d
fro

m
b
in

ary.

112 CHAPTER 5. INTEGRATION

Σ' A

B

cout

Σ
F�

	
�

	��

H�
H�

: A

B

c'

Σ

cin

Figure 46: A full-adder calculating the sum (Σ) of two binary 1-bit numbers
and a carry-in (cin) based on two half-adders (HA) of Figure 44. Right:
equivalent symbol.

When we join two half-adders together to form a full-adder, we can add
two binary 1-bit numbers and a carry-in (cin), calculating the sum of the
three and a carry-out (cout). Σ = A+B+cin, cout = (A+B+c) > 1 ? 1 : 0.
The latter is an expression ”if (A+ B + c) > 1 then cout = 1 else cout = 0”.
In logic:

Full-adder (FA)

A B cin Σ cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Figure 46 shows the circuit of such a full-adder (FA) that is the corner stone
of every modern computer.

5.2 Summing and subtracting

Now that we have a full-adder that can add two binary 1-bit numbers (with
carry), we can easily make an n-bit adder by daisy-chaining 1-bit adders, as
shown in Figure 47. The carry-in of bit n comes from the carry-out of bit
n− 1. The first carry-in is set to 0 (for additions). The calculation ’ripples’
through the daisy chain and after a while also the most significant bit (Σ3)
is ready. This is why this type of hardware adding two numbers is called a
ripple-carry adder.

5.2. SUMMING AND SUBTRACTING 113

����

Σ0

��0

4
-b

it
 r

ip
p
le

-

c
a
rr

y
 a

d
d
e
r:

A1B1

�1

F�

A2B2

�2

FΑ

A3B3

�3

FΑ
coutcin

Figure 47: A ripple-carry adder circuit able to add two 4-bit numbers made
from a daisy chain of 1-bit full-adders.

��

��

C�

��
mode:
0=add

1 = subtrri
p
p
le

-c
a
rr

y

a
d
d
e
r/

s
u
b
tr

a
c
te

r:

A1

B1

C1

F�

A2

B2

C2

F�

A3

B3

C3

F�
carry

Figure 48: A 4-bit ripple-carry adder/subtracter based on a 4-bit ripple-
carry adder, making use of the two’s-complement sign-change of numbers:
inverting all bits and adding 1 (here carry-in).

We see here the first processor component; the Intel 4004 used 4-bit
architecture and did all arithmetic with such adders. As we will see (Russian-
peasant algorithm), it can also do multiplications and divisions.

When we slightly adapt the 4-bit adder we can make it perform sub-
traction too. Remember that, in two’s-complement, negative numbers were
found by inverting all the bits and adding 1. We also observed then that sub-
tracting is equal to adding the two’s-complement of the number. Figure 48
shows how this is implemented in hardware. Every bit of the 4-bit operand
B is XOR-ed with 1, which is equivalent to inverting it. This operand B is
then added to operand A using the 4-bit adder from Fig. 47 that now also
gets a carry-in equal to 1. So if the mode bit is set (1), the output is

C = A + B + 1, thus C = A − B.

If the mode bit at the carry-in input on the other hand is 0, all XOR-gates
receive this 0 and simply copy the bits of operand B to the output unaltered.
So if the mode bit is cleared (0), the output is

C = A + B + 0, thus C = A + B.

114 CHAPTER 5. INTEGRATION

5.3 Advanced adding and subtracting

On basis of a 1-bit full-adder we managed to construct a ripple-carry adder
that can add and subtract any size binary numbers by placing the adders
in series. The carry-out of bit n becomes the carry-in of stage n + 1. The
problem with this is that every step in a ripple-carry adder delays the output.
Calculation in the next stage of a ripple-carry adder can only start when
the previous level has finished. Or better to say, the output of stage n
only becomes reliable, some time after stage n − 1 had become reliable„
because a reliable carry-out of the previous stage is needed to produce a
stable, reliable output. We can get an estimate of the speed on basis of the
number of transistor layers of the fundamental gates (see Table XX). AND-
gates and OR-gates have 3 layers, an XOR gate 5. Therefore, analyzing
the circuit in Figure 46, the sum output (Σ) takes 10 layers (longest path:
{A,B}-XOR-XOR-Σ), while the carry-out (cout) takes 11 layers (longest
path: {A,B}-XOR-AND-OR-cout). If a single transistor takes 1 ps to switch,
at worst a full-adder takes 10 ps to calculate the sum and 11 ps to complete
the calculation of the carry. A 32-bit ripple-carry addition will take 32
times 11 ps (0.352 ns) to fully complete and that may be too long, even
if the underlying transistors are fast. Instead of taking 1-bit full-adders as
building blocks, we may take 2-bit full-adders, or generally n-bit full-adders.
The complexity of the logic circuit increases rapidly (imagine a 17-input 9-
output Karnaugh map of an 8-bit full-adder), but a 4-bit instant adder still
seems feasible. An example of such a 4-bit carry-look-ahead adder circuit is
shown in Figure 49. As you can see, the hardware is more complex than a 4-
bit ripple-carry adder, but speed is gained; only 4 levels of gates are needed,
meaning the output is stable much faster. The numbers of layers to carry-
out (cout) is only 7 ({A,B}-{NOR,NAND}-AND-NOR-cout) compared to
44 in a ripple-carry architecture. (Assuming n-input gates switch as fast as
2-input gates). These 4-bit carry-look-ahead adders can then also be placed
in a ripple-configuration, so that a 32-bit adder can be made of eight 4-
bit-carry-look-ahead adders, with a total of 8 × 7 = 56 layers, a significant
reduction from the original 352 layers of the ripple-carry-adder.

Once again, subtracting numbers is done by adding the two’s-complement
of the number, similar to the technique used in the ripple-carry adder; in-
verting all bits by XOR gates and adding 1 by asserting the first carry-in
line, see Fig. 48.

5.4 Advanced logic circuits

Figure 50 shows a 4-bit right/left shifter. The input D is shifted right or
left one bit depending on the mode bit. Imagine this mode bit is R=1. The
leftmost AND-gate receives this 1 and bit D3, and its output is thus equal to

5.4. ADVANCED LOGIC CIRCUITS 115

CIN A0 B0 A1 B1 A2 B2 A3 B3

Σ0 Σ1 Σ2 Σ3 COUT

Figure 49: A 4-bit carry-look-ahead adder.

D3. This is fed into OR-gate of Z2. The other input from this Z2 OR-gate is
0 because it comes from the fourth AND-gate that receives a 0 from L and
this AND-gate thus outputs 0, independent of what D1 might be. OR-gate
Z2 is thus equal to (D3 OR 0) and that is D3. Doing the same analysis for
the other bits, one can see that

if R=1 (L-0): Z3, Z2, Z1, Z0 = 0, D3, D2, D1
if R=0 (L=1): Z3, Z2, Z1, Z0 = D2, D1, D0, 0

which is functionally a 1-bit R/L-shifter.

Other important circuits are multiplexers and demultiplexers. A multi-
plexer (MUX) selects one of 2n input lines by n control lines and places it on
the output (for instance a bus). This is done in a SOP solution by 2n AND-
gates that each receives one of the input lines and a unique combination of
direct/negated control lines. Only one AND-gate receives the control lines
in the form of only 1s and this one thus lets through the associated input
signal; all others output 0 because at least one of the control lines arrive as
a 0 at the gate. Finally, an OR-gate sums it all up. n−1 0s and the selected
data. The truth table below and Figure 51 clarify this.

116 CHAPTER 5. INTEGRATION

R

1
-b

it
 s

h
if
te

r:

L

D3 D2 D1 D0

Z3 Z2 Z1 Z0

Figure 50: A 4-bit R/L-shifter. The input D is shifted right or left one bit
depending on the mode bit (R).

Multiplexer (MUX, Fig. 51)

S1 S0 D3 D2 D1 D0 out min-term
0 0 x x x 0 0
0 0 x x x 1 1 S1S0D0
0 1 x x 0 x 0
0 1 x x 1 x 1 S1S0D0
1 0 x 0 x x 0
1 0 x 1 x x 1 S1S0D0
1 1 0 x x x 0
1 1 1 x x x 1 S1S0D0
x = don’t care

Exercise:

A multiplexer with 4 data lines and 2 selector lines can
be used to implement any logic function of three variables
A, B, C. Find a solution for the function f(A,B,C) =
∑

(2, 3, 5, 6).

The truth table of this function is given below. If we connect A to S1
and B to S0 then we can connect the four possibilities to the data lines
D3 . . . D0. In the truth table below horizontal lines are placed between
inputs with combinations of A, B. The data at the selected port is then
either 0 (if out = 0, independent of C), C (if out is equal to C), C (if
out is equal to C) or 1 (if out = 1, independent of C).

5.4. ADVANCED LOGIC CIRCUITS 117

Figure 51: A 4-line multiplexer. One of the 4 data lines D3, D2, D1
and D0, appear on the output. The choice is determined by the control
lines S1 and S0. These control lines appear on the AND-gates on unique
direct/negated combination. In this way only one AND-gate receives two 1s
from the control lines. This AND-gate becomes transparent for the data line.
All other AND-gates output 0. The OR-gate sums all 0s and the selected
data, the latter thus appearing on the output. Note also that, like any other
SOP solution, this can be converted into a NAND-only circuit.

A B C out
S1 S0
0 0 0 0

D0=0
0 0 1 0
0 1 0 1

D1=1
0 1 1 1
1 0 0 0

D2=C
1 0 1 1
1 1 0 1

D0=C
1 1 1 0

In this case, D0 is equal to C, D1 is equal to C, D2 is equal to C and
D3 is equal to C.

Similarly, a demultiplexer (deMUX) puts the data on the selected output
line with all other output lines equal to 0. See Figure 52. The truth table is
given by

De-multiplexer (deMUX, Fig. 52)

S1 S0 Z3 Z2 Z1 Z0
0 0 0 0 0 D
0 1 0 0 D 0
1 0 0 D 0 0
1 1 D 0 0 0

118 CHAPTER 5. INTEGRATION

Figure 52: A 4-line demultiplexer. The data D appears on one of the 4
output lines Z3, Z2, Z1 and Z0. The choice is determined by the control
lines S1 and S0. These control lines appear on the AND-gates on unique
direct and negated form. In this way only one AND-gate receives two 1s
from the control lines. This AND-gate becomes transparent for the data
line. All other AND-gates output 0.

Very similar to a deMUX is a decoder (Figure 53). A decoder is a deMUX
with the data equal to 1, and thus not needed to feed to the AND-gates.
That means, that a decoder has one output line equal to 1 and all other
equal to 0. This is used in things like selecting which of the memory chips
can place data on the communication bus, all others remaining in tri-state.
Only a chip that receives such a chip-select signal can talk.

Decoder (Fig. 53)

S1 S0 Z3 Z2 Z1 Z0
0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

An encoder is a circuit that outputs in binary the information about
which of the input lines is 1. So, if Dn is 1, it outputs n in binary format.
The encoder normally assumes that exactly one input line is asserted (1).
The hardware can then be simplified very much (see Figure 54). As a side
effect, if there are two input lines asserted, it outputs the highest number.
In a truth table

5.4. ADVANCED LOGIC CIRCUITS 119

Figure 53: A decoder is a demultiplexer (Fig. 52) with the data line equal
to 1, and thus not needed to supply to the AND-gates. This way one output
line, determined by the selector lines S, is 1 and all the others are 0.

Figure 54: An encoder determines which of the input lines is 0 and returns
the binary-coded number of that line, so if D2 has a 1, Z1,Z0 will be 1,0. In
case of more than one 1, the highest counts. At least one input line should
be 1.

Encoder (Fig. 54)

D3 D2 D1 D0 Z1 Z0
0 0 0 x 0 0
0 0 1 x 0 1
0 1 x x 1 0
1 x x x 1 1

x = don’t care

Note also that the simplification is so much that D0 is not connected to
anything, since in the truth table it only appears as a don’t-care (x). The
reader is urged to use the techniques of the previous chapter (esp. Karnaugh
maps), more specifically, using a product of sums to check that the hardware
of Fig. 54 indeed implements the truth table above.

Finally, a comparator compares two binary numbers A and B, and out-
puts if A=0, A<B or A>B. The determination of all bits being equal (A=B)
can be performed by a NOT-XOR-gate that outputs 1 if equal and 0 if dif-
ferent. AND’ing all these individual conditions results in the desired output,
see the middle part of the circuit in Fig. 55 for a 4-bit version of it.

120 CHAPTER 5. INTEGRATION

Figure 55: A comparator CMP compares two n-bit binary numbers and
outputs 1 if they are equal and 0 if they are different (shown here for n=4).
It also compares and determines if A>B and A<B. Of course exactly one
output is equal to 1.

5.4. ADVANCED LOGIC CIRCUITS 121

The other type of comparisons are a little more complex. For a 2-bit
comparison (4-bit input) we can still easily do the SOP approach. This was
shown in the exercise on page 65 and the solution is (A<B) = A1B1 +
A0B1B0 + A1A0B0. A full 4-bit solution is shown in Figure 55. Take a
look at the bottom part of the circuit in the Figure (A<B). It is OR’ing four
conditions coming from AND-gates. The bottom one, involving the most-
significant bits (A3 and B3), is simple: if the A3 is 0 and B3 is 1, then B
is obviously larger than A and the output A<B is true (1). The condition
above it is also easy to understand. One input is an output from the A=B
section, namely comparing the MSBs A3 and B3. This input is 1 if A3=B3,
so either A3=B3=1 or A3=B3=0. In this case, to find out if A<B, we now
must compare the second bits, A2 and B2. This is then done in the same
way as A3 and B3 was done before, so this AND-gate produces a 1 if A3=B3
and B2=1 and A2=0. OR’ing it in the final OR-gate produces a 1 at the
output. The same strategy is then used for the other bits (1 and 0). With
for bit 1 information coming from the NOT-XOR-gates equal to A3=B3 and
A2=B2 and for the LSB (bit 0) equal to A3=B3 and A2=B2 and A1=B1.

The condition A>B can be derived from the conditions A=B and A<B
both false, as is sometimes done in literature. Alternatively, a solution shown
in the Figure , a circuit similar to A<B can be constructed (just exchanging
the roles of B and A). The former solution is obviously simpler but slower,
containing less transistors, but more layers of them.

❉

We now have all the components necessary to build a computer: Memory.
Logic functions (AND, OR, XOR). Arithmetic functions (ADD, SUB). Shift-
ing functions (left and right). And comparisons (CMP: A<B, A=B, A>B).
We can start combining them and make them do some serious things. We
will see that by combining them a new property emerges, namely program-
ming. We can make it execute a determined number of specific operations,
called a program. This is where computing starts.

6| Computers

In the previous chapters we have seen how we can start with simple elec-
tronic components and make fundamental logic gates out of them. Then, by
combining them we made circuits that implemented any desired logic func-
tion. We learned special techniques to be able to help us in designed these
circuits. We also saw how we got an emergent property at every step. From
electronics to digital electronics (gates) we found Boolean logic. By adding
feedback to the system, we found memory effects as an emergent property.
In the next chapter we continued the integration and found more advanced
components, such as the multiplexer and decoder. We did not learn what
purpose they serve, but that will be made clear now.

We reached a point in which we can actually make the advanced process-
ing units that are at the core of every computer. We can build a computer
that can actually calculate things in a flexible way. It can be ’programmed’.
All the components needed were explained in the preceding text. We just
need to combine them.

6.1 Arithmetic and logic unit (ALU)

Let us start with designing a unit that does the actual calculation, all the
arithmetic and logic word-size operations. This is the arithmetic and logic
unit, or ALU for short. An ALU can perform a set of operations, the choice of
which one is being executed is determined by a code supplied to it. Figure 56
shows an example of a 1-bit ALU that can perform four different operations
on operands A and B: A AND B, A OR B, NOT A and A+B. All four
operations are always performed, but one is copied to the output Z by the
MUX. For instance, for the operation code F1,F0 = 1,1 the result of the
operation A AND B appears on the output. For the arithmetic operation
A+B, also a carry-in is taken into account and a carry-out is generated.

With this 1-bit ALU we can use the same technique as was used for the
full-adder (Fig. 48), namely build an n-bit ALU by daisy-chaining n 1-bit
ALUs. Figure 57 shows an example of such a technique in a 4-bit ALU.

123

124 CHAPTER 6. COMPUTERS

F1 F0

A

B

Σ
F�

carry
in

carry
out

M��

logic

Z

Figure 56: A rudimentary 1-bit arithmetic and logic unit (ALU). Depending
on the 2-bit opcode F1,F0 one of the calculated products (A AND B, A OR
B, NOT A, or A+B) appear on the output.

Figure 57: A 4-bit ALU made by daisy-chaining four 1-bit ALUs of Fig. 56.

Of course, real ALUs are much more complicated. They normally have
a much larger set of instructions (and thus more operation code lines F).
Moreover, not all instructions take the same amount of time of producing a
result and it may be possible that some take more than one clock cycle to
come up with the result at the output. However, we take this rudimentary
ALU as a prototype to explain how a computer architecture can be build
from known blocks.

The arithmetic function A+B is effectively a ripple-carry adder and is
therefore slow. ALUi can only start calculating when the carry of ALUi−1

has settled. More advanced ALUs use flash techniques (for instance the
carry-look-ahead adder of Fig. 49). Designing circuits with for instance 8/in-
put truth tables, 8×8 Karnaugh maps, etc. They can calculate arithmetic
sums much faster, at the cost of a design with a lot of transistors.

6.2. CENTRAL PROCESSING UNIT (CPU) 125

6.2 Central processing unit (CPU)

We are now going to join everything together in an integrated chip (IC)
called the central processing unit (CPU), that is except the external (main)
memory, which will be discussed in a separate chapter (Ch. 7). We start
with the ALU. First we observe that it has two input data elements – so
called operands – that it can process in a cycle. In some cases we will only
need one (like for instance the 1-operand instruction NOT A), but in most
cases operations consists of processing two input operands. That means that
all high-level computation has to be broken down to such dyadic (two-input)
operations. If we, for instance, want to calculate the 4-operand expression
y = ax2+bx+c, we have to break it down into bi-operand operations. (Note:
a smart way to do it, requiring only one register z would be a × x → z,
z + b → z, z × x → z, z + c → z). The ALU is a two-input-operand-one-
output-operand machine.

Thus we need a place to store the operands. A place where we can
retrieve the input operands and store the output operand. While this can
be external memory (some architectures indeed only have external memory),
a better (faster) solution is to have memory elements close-by. This for the
very simple reason that the computer speed is limited by the speed of light
c = 3 × 108 m/s. That means that if we are going to store and retrieve
information at a distance of, say, 15 cm, communication takes about 1 ns,
and our processor limited to 1 GHz. That is why it is advantageous to
have the memory elements as close to the ALU as possible. Such memory
elements we call registers. These are flip-flops or gated latches, D-type flip-
flops, in the vicinity of the ALU, joined in the CPU IC. Main memory will
be described later, rests to say that there also exists an intermediate type of
memory – ’cache’ – that is not directly next to the ALU, behaves as normal
main memory. and is still inside the CPU.

Processing (running a program) consists of supplying the sequence of op-
eration codes F and operands A and B to the ALU, and storing the results
Z the ALU produces somewhere, either in the registers or in memory. Apart
from the data registers, the CPU also needs a place to store the actual op-
eration that is performed (instruction register IR) and the program counter
(PC) that points to the location in main memory of the instruction to be
copied to the instruction register.

Most architectures then have these registers inside the CPU:

• Data registers. A place to store the two input operands A and B and
the resulting value Z.

• An instruction register IR specifying what operation to perform, where
the operands can be found, and where to place the result. Similar to
our 2-bit instruction {F1,F0} of our 1-bit ALU.

126 CHAPTER 6. COMPUTERS

A

L

U

A

B

instruction reg.

program counter

e

x
��
� n

a
l

m
e
m

o
ry

local

registers

CPU

control

data

control

address

I/O

Figure 58: Schematic view of a typical CPU in a Von Neumann architecture.
The architecture thus has four basic components: An ALU performing the
arithmetic and logic operations, control logic, external memory, and I/O.

• A program counter PC specifying where in memory the next instruc-
tion can be found.

• Flags describing the state of the machine. For instance if the last result
was negative or not or if a carry occurred.

This combination of control logic, program counter, instruction register,
ALU and registers (possibly with cache) is called the central processing unit
(CPU). A typical CPU is shown in Figure 58. It is also sometimes called a
datapath. Technically speaking, a CPU is a datapath plus the controlling
hardware.

The CPU (ALU plus control logic), plus memory, plus I/O defines the
architecture. In the Von Neumann architecture, shown in Fig. 58, the mem-
ory is separated from the CPU and is external. Communication between
CPU and memory takes place over a data bus, with the place (address) of
the information in memory communicated either over the same data bus or
by a separate address bus (shown).

6.3 Control logic

The controlling hardware is like a traffic controller that basically runs the
program by sending strobing pulses to the individual components at the
correct times. Running a step in a program consists of

• Fetching the instruction from main memory. This means placing the
program counter latch out of tri-state so that it sets the next-instruction’s

6.3. CONTROL LOGIC 127

address on the address bus. The controller then enables the external
memory chip which contains the address that can now write data (that
is, the instruction code) on the data bus (dashed lines) and the instruc-
tion register receives a ’strobing’ (gate) signal pulse. The instruction
register now contains the operation code (’opcode’) and a specification
where to find the operands.

• The controller decodes the instruction and strobes the operands into
the registers A and B of the ALU that then processes them.

• The controller selects (by a multiplexer) the result of the desired op-
eration and places it at the output of the ALU. The ALU gets write
permission (is placed out of tri-state) and places the data on the (in-
ternal) data bus.

• The controller strobes the result in the desired local register or places
it on the external data bus to write it in external memory.

• The program counter is advanced to make it point to the next instruc-
tion in memory and a new cycle begins.

• The output can also be piped into the program counter, in which
case the program does not continue in the next address but jumps to
somewhere else in memory instead.

• Some instructions can be conditional, as in ”if (A<B) then jump to
address”. Of course, coded in hardware. (If voltage at output of the
comparison logic array is hi (COMP=1), then latch operand into PC).

Figure 59 shows an imaginary example of a very simple architecture, a
1-bit ALU with a 4-operations instruction set, with four 1-bit registers and
main memory containing 8-bit instructions from which only the instructions
can be read (contains no data, and no writing is possible; just for simplicity’s
sake).

The control-logic hardware is in this case simple; it converts the sym-
metric (50% duty cycle) clock into a sequence of short pulses by the invert-
and-delay technique discussed in Fig. 36 on page 92: IR, AB, REGS, PC.
At the IR pulse 8-bits of information in main memory are latched into the
gated latch of the instruction register (IR), with the address of the infor-
mation supplied to the 8 multiplexers by the program counter (PC). At the
AB pulse, the two operand information bits of the two registers through
multiplexers selected by the {A1,A0} and {B1,B0} bits of the instruction
of the instruction register are latched to the ALU registers A and B. The
ALU constantly performs all four possible operations, but only one appears
on the output, namely the one selected by the opcode bits {F1,F0} of the
instruction. After a while, the register selected by the {Z1,Z0} bits of the

128 CHAPTER 6. COMPUTERS

opcode

F1 F0 A1 ! B1 B0 Z1 Z0

operands specification

"#U

1$%&(
r)*&+(),+ m-.

de

m-.

addr)++ /0 %&(2 34&0
3)35,6

378es

m-.

strobe

I9 : 9R;< PC

=

B

>?

@DEG9DJ
sKLNOPs

QTU

VW XY WZ[\ PC]^_

`a

bd

afgh

PC

ijklnjkop tqrquv wqvuyzw{

|
}
~
��
}
��

�j�ol �j��i

� �qt �yty

n bit data

zyt��
str��� wqvuyz

QTU

control

��

PC

�����njko� �I9� :�9R;<��@�p

� � � �
� � � �
� � � �
� � � �

Figure 59: A rudimentary version of control logic of a 1-bit processor
with four 1-bit registers, an 8-bit instruction register (IR), an n-bit program
counter register (PC). (2n × 8 bits total memory size). The control logic is
the black box generating 4 latch strobe signals, with the hardware inside the
box and the timing signals coming out of it shown below.

instruction register is receiving the REGS latch pulse to store the output
of the ALU. Finally, the PC pulse increases the address with the magic
’+1’-box that is not further explained here, but the PC in this rudimentary
example can be simply a Moore-machine sequencer/counter; no jumps in the
program can be made.

We can represent the control logic as hardware, we can also represent it
as software, where the control-logic software program consisting of opera-
tions IR, AB, REGS, PC fixed in hardware can be written as

6.4. PROGRAMMING THE CPU 129

1000

0100

0010

0001

Such ’program’ code is often called micro-code. Of course, real control logic
is much more complicated than this example and the program can be rather
complicated. It can be ’written’ in hardware, or the program can be stored in
ROM and copied to latches; maybe two signals are asserted at the same time.
Maybe an engineer had an idea that the program counter can be increased
already while the ALU is performing its operation and the control-logic code
might be 0101, with the PC pulse coinciding with the AB pulse. The Figure
just shows a very rudimentary imaginary example to give you an idea how
it might work.

When the controlling consists of simple single-step processing this is
called random logic. All operations are performed by single-step logic gates
in the ALU. Alternatively, each instruction in the instruction register can
consist of smaller micro-steps in the ALU performed by the controller. The
program in the instruction register is called macro-code, whereas the instruc-
tions in the controller are micro-code. As example may serve an operation
MUL $3, $2, $1 (multiply the contents of register 1 to the contents of register
2 and place the result in register 3). In reality, the controller may translate
this to many steps of shift-mask-and-add, since most ALUs cannot perform
directly multiplications. (Just like humans cannot, by the way; we are also
performing multiplications in various steps, as we have seen in the chapter
on number systems, Ch. 2). In fact, micro-code is even on a much more
basic level and consists of enabling outputs, etc. The controller will take
care of running the micro-code and we will not go into detail about it. We
can see it as a small CPU within the CPU.

6.4 Programming the CPU

We can now program this computer by placing a set of instructions in mem-
ory. Each of these instructions consists of what to do (the operation), with
what to do it, and where to place the result (the operands). The controller
will ’execute’ the instructions by strobing input into flip-flop registers, multi-
plexing the chosen operation results to the output, and enabling components
(taking them out of tri-state).

An ADD $3, $2, $1 instruction (arithmetically add the contents of reg-
ister 1 to the contents of register 2 and place the result in register 3) that
will be loaded into the instruction register and executed by the control logic
might look something like

100000 00011 00010 00001 00000000000

130 CHAPTER 6. COMPUTERS

The first six bits represent the opcode (ADD), the next three sets of five
bits specify the two input registers (often called ’source’ and ’target’, re-
spectively) and the output register (’destination’). The last bits represent
the type of adding, in this case two’s-complement signed int. The controller
interprets these bits and performs the right action by strobing the right
components at the right time.

This is the so-called machine code, a representation of macro code in
binary form. We can also represent machine code in hexadecimal to save
space. In this case, we rearrange the 32 bit pattern shown above into 8
groups of 4 bits and convert each 4-bit group to a hexadecimal digit:

0b 1000 0000 0110 0010 0000 1000 0000 000
0x 8 0 6 2 0 8 0 0

The hexadecimal machine code thus 0x80620800. This is still a very awkward
way of writing code. Fortunately engineers designed ways of writing much
more comprehensible code, (macro) Assembly, which writes machine code
in a easy readable way. We will treat Assembly in separate chapters in this
book. We are now returning to the subject of how to do full arithmetic.
Namely, how to do it on basis of the few instructions we have in hardware,
ADD, SUB, AND, OR, XOR, and CMP.

6.5 Advanced arithmetic: Multiplication and

division

Considering the fact that we have to our disposition only adding, subtract-
ing, shifting, comparing, and the basic logic operations, how advanced arith-
metic is done? For example multiplications and divisions.

Multiplication is done by the-shift-and-add Russian-peasant algorithm
presented in Chapter 2. The computer is performing this algorithm with
binary numbers, which is very simple, as we have seen. The look-up table
for binary number 1-bit multiplication is:

0 1
0 0 0
1 0 1

In summary: We shift operand A to the left and operand B to the right;
if the LSB of B is 1, then add A to the sum. If not, then do nothing. Repeat
until B is 0. An example of a long multiplication by this algorithm in binary
multiplying A = 13 (1101) with B = 6 (011):

6.5. ADVANCED ARITHMETIC: MULTIPLICATION AND DIVISION131

�����

ab

�� ¡� ����¢ �� �

� �
��

 ���
��

 ��

���
��

�

£

¤

¥ ¦ §¨©
¦ ª«¨¬
¦ ®¯¨¬

° ±² ³´µ¶·
¸ ±² ³´¹º¶·

»¼»½¾ ¿À
Á»Â¼¾Ã

ÄÅÆÇÈ ÉÆÊÆÈ
ÇËÌÍ Î ÆÏÈÌ Ð

ÑÒ ÓÒÔÕ Ö×Ø×ÙÚ
×Ñ ÛÜ ÔÕÛÖÝ
ÝÞÛßà

b

Figure 60: An example of a long division in binary.

1 1 0 1 13 (A)
0 1 1 0 ×6 (B)

0 (operand A not added)
1 1 0 1 0 (1-left-shifted operand A added)

1 1 0 1 0 0 (2-left-shifted operand A added)
0 (3-left-shifted operand A not added)

1 0 0 1 1 1 0 =78

No multiplication hardware is used for multiplications. Only shifting left
and right, masking (AND’ing with the correct pattern, in this case: B AND

000...01 to determine the value of the last bit), and conditional additions.
These were all described in the previous chapter (Chapter 5).

Division (of integers) is very similar to long division we learned to do on
paper. As an example, a division of 79 by 6 (13 plus a remainder of 1) is
shown in Figure 60. To translate this to a computer (hardware) algorithm.
If we perform operation a/b:

1. Left-shift one bit of a into register x

2. if (x>=b)
subtract b from x and left-shift a 1 into result register y

else
left-shift a 0 into result register y

3. if at LSb of a,
y=a/b, x=a%b (remainder). READY

else
goto step 1

132 CHAPTER 6. COMPUTERS

As you can understand, it takes 32 left-shift-subtract cycles to divide two
32 bit numbers, compare this to the 32 right-shift and add cycles of multi-
plication. The interesting thing is that no additional hardware is needed to
perform multiplications and divisions in a computer. They are all based on
additions (with two’s-complement numbers) and shift and mask instructions.

Of course, a lot of effort was spent on finding faster algorithms. A fa-
mous multiplying algorithm is named after Karatsuba: Imagine you want to
multiply x and y, each 2m bits long. These both can be decomposed into

x = x1 × 2m + x0

y = y1 × 2m + y0

each m bits long. Then a multiplication is

xy = (x1 × 2m + x0)× (y1 · 2m + y0)

= z2 × 22m + z1 × 2m + z0,

with

z2 = x1y1

z1 = x1y0 + x0y1 = (x1 + x0) · (y1 + y0)− z2 − z0

z0 = x0y0.

These multiplications can be performed on smaller (and faster) hardware.
For instance we can do 32-bit calculations on 16-bit hardware (adders), since
the operands x1, x0, y1 and y0 are half the size of the full operands x and y.
An example (for base 10 instead of base 2), z = xy = z2×106+z1×103+z0:

12345 = 12 × 103 + 345
6789 = 6 × 103 + 789
z2 = 12× 6 = 72
z0 = 345× 789 = 272, 205
z1 = (12 + 345)× (6 + 789)− 72− 272, 205 = 11, 538
z = 72× 106 + 11, 538× 103 + 272, 205 = 83, 810, 205.

Where the multiplication by powers of 10 is done by left-shifting the appro-
priate amount of decimal cases.

Another approach of doing multiplications is by a look-up table that can
be stored in code (microcode or macrocode). For 8 bit calculations (with 16-
bit results) we’d need a two-by-two table of size 28× 28× 2 bytes = 131,072
bytes. However, we can make use of the equivalence (x−y)2 = x2−2xy+y2,
or

xy =
x2 + y2 − (x− y)2

2
,

and use a one-dimensional table (i.e., vector) of squares only. For a multi-
plication of two operands x and y, we’d look up in the vector the squares

6.6. FLOATING POINT; IEEE 754 133

of x, y and x − y, do summing and subtracting and divide by 2 at the end
(a right-shift-one). A total of three vector-look-ups, two subtractions, one
addition and a shift. For 8-bit integer multiplications we’d need only 28 =
256 entries in the table, each 16 bit wide, giving a total of 512 bytes for our
look-up vector. For 32-bit (4-byte) calculations we’d need 232 × 8 bytes =
34,359,738,368 bytes, which is not very workable, making this only a solution
for small integers.

6.6 Floating point; IEEE 754

As we have seen, computers are finite-state machines. Also numbers are
limited by the size of storage elements. So, a byte can store positive integer
numbers from 0 to 255, or from -128 to 127. As long as we stay within these
limits, all possible numbers can be represented by these bit patters. This is
different for numbers from the real domain, R. Even if we limit the range,
for instance from 0 to 1, within that range the number of possible numbers
is infinite. And thus they cannot be (all) represented by the finite-state
memory elements. As we have seen in the chapter on numbers (Ch. 2), an
elegant way of representing numbers from the R domain is floating point. It
has to be said beforehand that calculations in floating point are not (always)
exact because of the number of states of a bit pattern is finite.

The IEEE 754 standard for floating-point numbers was developed to
make it possible for engineers from various architectures to talk with each
other. It is based on fractions and exponents that are based on the binary
number system, so

n = f × 2e,

with both f and e binary integers that were described before. IEEE 754 is
an industry standard described by the Institute of Electrical and Electron-
ics Engineers (IEEE, pronounced as ”eye triple ee”) and has the following
features for single floats and doubles (see Table XXV for other float types):

single:
1 8 23
± ...exp... ...frac...

double:
1 11 52
±exp......frac......

• It has three formats with different total bit-lengths: single (32 bits),
double (64 bits), and extended (80) bits. As we will see, many architec-
tures have hardware co-processors that can perform dedicated floating
point operations with the first two types of numbers. Calculations
with extended numbers often have to be emulated with software.

134 CHAPTER 6. COMPUTERS

Table XXV: Various lengths of IEEE 754 floating point numbers (float). The
excess value used is equal to 2nexp−1−1, with nexp the number of bits in the
exp field. The (normalized) number is equal to (−1)±(1.frac)×2exp−excess.

floating point: ± ...exp... ...frac...

name total size ± exp frac

bits bytes bits bits (excess) bits
half 16 2 1 5 (15) 10
single 32 4 1 8 (127) 23
double 64 8 1 11 (1023) 52
extended 80 10 1 15 (16383) 64
quadruple 128 16 1 15 (16383) 112
octuple 256 32 1 19 (262143) 236

• One sign bit, at the position of the MSB. 0 = positive, 1= negative.
It thus uses the sign-magnitude convention.

• The exponent is 8 bits long for singles and 11 bits long for doubles.

• The exponent is written in the format ’excess 127’ (for singles), and
’excess 1023’ (for doubles). It means that the bits that represent the
exponent are a binary positive integer to which 127 is subtracted (or
1023) to find the exponent used in the calculation. Example: If the
exponent pattern is exp=00001001, this is equal to 9, so e = 9− 127 =
−118. (The bit pattern 11111111 is reserved for special use, infinity
and not-a-number).

• The fraction bit pattern (frac) contains 23 bits (single) or 52 bits
(double).

• Normalized fractions start with ”1.”, so it needs not be written, it is
’implied’; the bits only represent the digits after the floating point.
This bit pattern, frac, plus the leading ”1.” we call the significand:
s = 1.frac; the final number thus being (for singles and doubles re-
spectively).

single : n = ±(1.frac)× 2exp−127,

double : n = ±(1.frac)× 2exp−1023.

(Note the strange mixed writing of the above, binary for the signifi-
cand and decimal for the exponent. It is done for clarity; not many

6.6. FLOATING POINT; IEEE 754 135

people would understand 10exp−01111111 correctly, thinking it is a base-
10 number). The significand is a number between 1.000... and
1.111....

As an example, the hexadecimal bit pattern 0x3f000000 is:

3 f 0 0 0 0 0 0

0011 1111 0000 0000 0000 0000 0000 0000

grouping the bits:

sign exp frac

0 01111110 00000000000000000000000

which translates into
sign: +
exponent: exp − 127 = 126− 127 = −1
significand: 1.frac = 1.0
So the number is: +1.0× 2−1 = 0.5 (base 10).

❉

Special bit patterns exist for: denormalized numbers in general, zero, infinity
and NaN (not-a-number: a numeric data type that cannot be interpreted as
a value, that is undefined or unrepresentable for instance 0/0 or the square-
root of a negative number). Together with the normalized numbers above
they are described as:

Normalized:
sign exp frac

± — non-uniform — — any —

Denormalized:
sign exp frac

± 00...00 — non-zero —

Zero:
sign exp frac

± 00...00 000000...000000

Infinity:
sign exp frac

± 11...11 000000...000000

NaN:
sign exp frac

± 11...11 — non-zero —

(In this ’non-uniform’ means not all zeros and not all ones). Denormalized
numbers use excess-126 instead of excess-127 for the exponent. The exp field

136 CHAPTER 6. COMPUTERS

containing only zeros, thus the exponent factor is always 2−126. Moreover,
denormalized numbers do not have an implied ”1.” in front of the fraction,
but an implied ”0.” instead. The significand is thus s = 0.frac. On basis of
this we can make the following observations:

• The largest positive normalized single-float number is in hexadecimal
0x7f7fffff

exp=11111110, frac=11...11 [23 ones], with ”1.” in front, the signifi-
cand is close to 2.0:

n ≈ 2254−127 × 2.0 = 3.403× 1038.
n ≈ 2excess+1.

• The smallest positive normalized single-float number is in hexadecimal
0x00800000

exp=00000001, frac=00...00 [23 zeros], with ”1.” in front, the signif-
icand is 1:

n = 21−127 × 1.0 = 1.175× 10−38.

• The largest positive denormalized single-float number is in hexadeci-
mal

0x007fffff

exp=00000000, frac=11...11 [23 ones], with ”0.” in front, the signifi-
cand is close to 1:

n ≈ 20−126 × 1.0 = 1.175× 10−38,
nearly equal to the smallest normalized number, and looking at the
hexadecimal patterns we see they differ by 1. We see that the tran-
sition from normalized to denormalized numbers is seamless and the
high-level programmer needs not to worry about the (de)normalization
conventions of IEEE 754.

• The smallest positive denormalized single-float number is in hexadec-
imal

0x00000001

exp=00000000, frac=00...001 [22 zeros, one one], with ”0.” in front,
the significand is 2−23:

n = 20−126 × 2−23 = 2−149 = 1.4× 10−45.
n = 2−excess+1−nfrac.

In which nfrac is the number of bits of the frac field.

It is clear from this that the relative error of numbers is rather constant for
normalized numbers, but increases when we reach the lower limit of denor-
malized numbers. At the lower range, the distance between two numbers
is equal to the lowest number and the relative error is 100%. Normalized
numbers do not suffer from this effect and relative error is independent of
the exponent in these numbers.

6.6. FLOATING POINT; IEEE 754 137

Table XXVI: Range of IEEE 754 floating-point numbers using engineering
notation (Exx represents ×10xx). nfrac is the number of bits of the frac

field

Type Largest Smallest
(2excess+1) (2−excess+1−nfrac)

half 6.5534E4 5.96E-8

single 3.4028235E38 1.4E-45

double 1.7976931348623157E308 4.9E-324

extended 1.189731495E4932 1.8E-4951

quadruple 1.189731495E4932 6.5E-4966

octuple 1.6113257175E78913 2.2E-78984

The range of single-float numbers are presented in Table XXVI, where
also the range for doubles is shown. Note that calculations that result in
a number smaller than the smallest value are rounded down to 0.0, while
numbers larger than the largest number can cause an overflow error or are
’rounded up’ to inf.

Exercises:

1. What are the smallest and largest double floating point
numbers?

2. What is the bit pattern for the single floating point
value 9.0?

3. What is the bit pattern for the single floating point
value 6.125?

4. What is the bit pattern for the single floating point
value −5/32?

5. What single floating point value is represented by the
bit pattern 0x42e48000?

6. What single floating point value is represented by the
bit pattern 0x00800000?

7. What single floating point value is represented by the
bit pattern 0xff800000?

8. What single floating point value is represented by the
bit pattern 0xff800001?

138 CHAPTER 6. COMPUTERS

Answers: 2: 0x41100000, 3: 0x40c40000, 4: 0xbe200000,
5: 114.25, 6: 1.175× 10−38, 7: −∞, 8: NaN.

❉

Multiplying floating point numbers is easy: multiply the two significands
that are integers, and add the two exponents to result in the final significand
and exponent, possibly after renormalizing the representation of the number.

f1 = s1× 2e1−127

f2 = s2× 2e2−127

f1 · f2 = s1× s2× 2e1+e2−254

and note that s1 = 1+fraction1 and s2 = 1+fraction2 so that s1 × s2 = 1
+ fraction1 + fraction2 + fraction1 × fraction2 which is a number between
01.0000. . . (2) and 11.11. . . 1 (4)

Real hardware is a little smarter than that. That is why dedicated nu-
merical co-processors exist (ex. 8087 from Intel). Take for example divisions
in floating point. Basically the algorithm is that a division is a multiplication
by its reciprocal:

a

b
=

a× reciprocal(b)

b× reciprocal(b)
= a× reciprocal(b).

The multiplication by a we can leave as the last step. The problem consists
of finding the reciprocal 1/b. We will first transform this into

a

b
= a× 1

b
,

and continue with first solving this problem.

1

b
= reciprocal(b) =

1× reciprocal(b)

b× reciprocal(b)
.

So, it is all about finding the reciprocal of b by trying to make the de-
nominator d = b × recripocal(b) close to unity. In a co-processor the first
approximation of the reciprocal is found in a look-up table. For instance,
the first 5 bits (the look-up table is 25 = 32 entries). The other bits are then
found by iteration: The denominator d is close to 1 (with the objective of
making it 1), so imagine we have a tiny error ε

d = 1 + ε.

Then, if we iterate to find a new reciprocal,

reciprocal(b)′ = reciprocal(b)× (2− d),

6.7. ADVANCED CALCULATIONS 139

then our new denominator d′ becomes

d′ = b× reciprocal(b)′

= b× reciprocal(b)× (2− d)

= d× (2− d)

= 1− ε2.

This implies that we quadratically approach unity and find our reciprocal. A
five-bit-accurate 1 in the denominator will become a 10-bit-accurate 1 after
one more pair of multiplications.

An example: compute 1/b = 1.0/3.5. The initial guess for reciprocal(b)
from the look-up table (entry 3; note that numbers larger than 10 or smaller
than 1 can be scaled to fit within this table; a leading digit of 0 is not
possible):

1 1.0000
2 0.5000
3 0.3333
4 0.2500
5 0.2000

6 0.1667
7 0.1426
8 0.1250
9 0.1111

The starting value is 0.3333. Now, d = b × reciprocal(b) = 3.5 × 0.3333 =
1.16655. The next guess for reciprocal(b) will thus be 0.3333×(2−1.16655) =
0.27778. This is repeated and the result is 0.28549443, repeat and the re-
sult is 0.285714116. Not bad; my calculator tells me the ’real’ answer is
0.285714285.

In any case, it is obvious that divisions are more complex, and generally
a bit slower, than multiplications. This is good to know when you write
code in a higher-level language such as C++ or Pascal. It is better to write

a = b*0.2;

than
a = b/5.0;

or
a = b/(c*d);

instead of
a = b/c/d;

6.7 Advanced calculations

We have seen how a processor can do arithmetic adding. Them by applying
the knowledge that the negative of a number is the 2’s-complement of the
number (inverting all bits and adding 1) with the same hardware we can
subtract. Then we found out that multiplications are shift-add cycles and
divisions are multiplications by the reciprocal. So, the only thing we need is

140 CHAPTER 6. COMPUTERS

shifting-and-masking and adding. But what if we want to do more compli-
cated things, like generally evaluation functions f(A)? How do computers
do that? We’ll now see how this can be done too.

The first method is for a class of functions f(A) for which we know the
derivative of the function f ′(A), or a problem that can be inverted into such
a situation. Take for example calculating the square-root x of an input value
(argument) A, or in other words

x =
√
A.

This is the same problem as determining which x, when multiplied by itself,
results in A, or in other words x2 = A. This, in turn, is the same as finding
the zero of a function

f(x) = x2 −A.

For this we can use the numerical recipe of Newton and Raphson. It consists
of making successive guesses as to where the zero will be, based on the
function value and its derivative at a certain point x. Figure 61 explains this.
Starting at a point x0, an estimation of where the zero might be is made
on basis of the function value and derivative at x0. Successive iterations
will lead to the x-value at which the function is zero. This will then be the
square root of the argument. In other words, at each step

xi+1 = xi −
f(xi)

f ′(xi)
.

In this case

xi+1 = xi −
x2
i −A

2xi

=
1

2

(

xi +
A

xi

)

.

These iterations use simple multiplications, divisions and subtractions, all
implemented in hardware and part of the instruction set. The only thing
that remains is to determine when we can stop; when the calculation is close
enough. In other words, we have to implement a loop of the type repeat-
until (or do-while) a certain condition is met, when two successive iterations
give a value for x close enough, let us say less than the precision δx aimed
at. We continue until the difference between two iterations is less than a
tolerance value, δx:

∆x = |xi+1 − xi| < δx.

As an example, let’s calculate the square root of 30.0 with the precision
of δx = 0.01. We need to start somewhere, it could be anywhere (positive),
so why not 30.0 itself? We then get the following sequence:

6.7. ADVANCED CALCULATIONS 141

Figure 61: Method of Newton-Raphson for finding zeros in functions.
Starting at a point x0, a new estimation x1 is found based on the function
value and its derivative at x0, namely x1 = x0 − f(x0)/f

′(x0).

i xi xi+1 ∆x
0 30.0 15.5 14.5
1 15.5 8.72 6.78
2 8.72 6.08 1.64
3 6.08 5.51 0.57
4 5.51 5.48 0.03
5 5.48 5.48 0.00

So,
√
30.0 = 5.48± 0.01.

Another set of problems does not have a known derivative, or these
derivatives are as intractable as the original problem of finding the function.
Take for example the function f(x) = sin(x). Its derivative is f ′(x) = cos(x)
and this does not help very much; we’d be as far away from home as where
we were.

In this case we can use Taylor expansions. And exactly the thing the
mechanical calculator the Difference Engine of Babbage was good at (See
p. 70 and the dedicated section at the final chapter of this book). As an
example, the sine function can be Taylor expanded to (x in radians), see
Figure 62:

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
. . .

In general, any function f(x) can be Taylor-expanded to

f(x) = S0 + S1x+ S2x
2 + S3x

3 + S4x
4 . . .

to minimize the number of multiplications, this would be translated by the
computer into

f(x) = S0 + x · (S1 + x · (S2 + x · (S3 + x · (S4 + . . .)))).

142 CHAPTER 6. COMPUTERS

Taylor-eáâãäåæçä
center

èéêëì íî îïêðñòíê
ìóéôïéñòíêõ

x

f(x)

Figure 62: Method of finding a function value for f(x) = sin(x). Only
a selected range is needed because the others can be found by mapping,
sin(−x) = − sin(x) for example. In the range the Taylor-expansion is done
from the middle, so with x′ = x− π/4.

The constants Si are stored somewhere in the computer (probably in a look-
up table in the CPU) and the function evaluation is converted into a series
of multiplications that the computer can deal with very well. In some cases
special properties of the functions are used to facilitate the calculations. For
example, it is know that sin(−x) = − sin(x) and sin(π−x) = sin(x) so we
only have to calculate the value between 0 and π/2, the rest can be derived
from that, see Figure 62.

The Taylor expansion above is done relative to x = 0, but this is not
always the best case. In our sine example above, it would be much better
to Taylor-expand the function exactly halfway the interval of interest, that
means around π/4 since the maximum distance to the desired function is
then only π/4 and the series converges much faster. The series would be

f(x) = T0 + x′ · (T1 + x′ · (T2 + x′ · (T3 + x′ · (T4 + . . .)))),

with x′ = x − π/4 and the constants Ti obviously different than the Si

constants.
In other cases this is even more obvious. Calculating the logarithm does

not make sense in a Taylor series around 0, because it is infinite there. We’d
better Taylor-expand around x = 1. Moreover, also in this case we can
reduce the range of necessary function evaluation, since ln(ex) = 1 + ln(x),
so we can first determine in what range x is and add or subtract as many
times 1 needed, while simultaneously adjusting x to a range between 1 and
e (see Figure 63). Even better, we do the logarithm calculation on the
significand only and then add a value by looking at the exponent of the
IEEE 754 number. Moreover, we can make use of the mathematical equality

logb(x) =
loga(x)

loga(b)
,

and also calculate logarithms with other bases once any loga is implemented,
for example ln = loge. And if architecture engineers are smart, they’d

6.7. ADVANCED CALCULATIONS 143

Taylor-eö÷øùúûüù
center

ýþÿa� �� ��ÿ����ÿ
�eþ��þ���ÿ�

x

f(x)

e

Taylor-ex	
����
center

R���� �� ��������
�����������

x

f(x)

1

Figure 63: Taylor expansion of a logarithmic function and an exponential
function.

start with the log2(x) implementation, because then the exponent directly
translates into an added number to the final result,

log2(1.frac · 2exp) = log2(1.frac) + exp.

and 1.frac is already nicely within the desired range from 1.0 and 2.0.
For the exponential functions, we can use the opposite, adjust the exp

part of the float number by looking how far the argument is away from 0 –
that is, the integer part of A, and then do a real calculation for an argument
between 0 and 1. (See Figure 63).

Now that we have the logarithm and exponential functions, we can find
any exponent xa by the simple rule

xa = eln xa

= exp(a× ln(x)),

which is the powf(x,a) function in C. (Note that the integer version pow(i,n),
in, is much simpler).

Another technique that is often used is interpolation, see Figure 64. A
table of a limited number of function curve points can be stored in a look-
up table and then the function value for any argument found by simply
interpolating between two known points, assuming the function to be locally
linear:

f(x) =
f(xi) ·∆xi+1 + f(xi+1) ·∆xi

∆xi +∆xi+1

.

These methods are often done inside hardware (micro-code) or imple-
mented in Assembly. More advanced and less-often-used functions are writ-
ten in higher level program languages like (especially) FORTRAN and avail-
able in pre-compiled libraries. In general, readers might want to consult
classic works such as Numerical Recipes in C, Pascal, Fortran.

144 CHAPTER 6. COMPUTERS

xi

f(x)

f(xi)

f(xi+1)

xi+1

�xi �xi+1

x

f(x)

Figure 64: Any function value (◦) can be approximately found by interpo-
lation between two closest known function values (•) calculated or known in
another way.

7| Information and mem-

ory

Memory is the capacity to store information temporarily or permanently. In
the framework of computer architecture this means inside the CPU, but also
in things like DRAM (dynamic RAM) chips and even external things like
hard disks, SD (secure digital) memory cards, etc.

Before we continue, it has to be said again that the information stored is
in a different domain than the physical state of the memory, be it a voltage
at a gate, or a charge in a DRAM or hole in a punch card or ticker tape.
One thing is a voltage, another thing is the information this voltage stores
and represents. The latter is not part of the physical domain, but the virtual
world of mathematics. How we humans conventionally interpret the physical
state.

As an example, an 8-bit memory container can store a bit pattern that
can either represent

• An unsigned short int or byte 0 . . . 255

• A signed short int −128 . . . +127

• An ASCII (American Standard Code for Information Interchange)
character (NULL, . . . ’A’, ’B’ . . . ’Z’, . . . ’a’ . . . ’z’ See the appendix
at the end of the book)

• A set of 8 state flags (printer on, paper empty, toner low . . .)

• Two BCD digits, ’00’ . . . ’99’

• Anything else we can come up with.

Let’s first take a look about the information itself and how to quantify it.

145

146 CHAPTER 7. INFORMATION AND MEMORY

7.1 (Quantifying) Information

The smallest piece of information is a bit. It has two possible states. It can
be 0 volt and 5 volt or 0 coulomb and 1 pico-coulomb in a physical sense.
And we can represent it conventionally as 0 and 1 or false and true. In
general, it can store the answer to a question that can be answered with
”yes” or ”no”. But, not all questions are equal. Take a look at these three
statements (meaning a ”yes” to a question)

”It rained yesterday in London”
”It rained yesterday in Rome”
”It rained yesterday in Riad”

It is obvious that not all of these sentences contain the same amount of
information. Take for example the first one. Most people will say ”Duh! It
always rains in London. Where is the news?!” We start getting a feeling
here about what information is. That we are somehow surprised with the
answer. The last sentence, about rain in Riad (a city in the middle of a
desert) surprises us much more. So we feel it contains more information,
although all sentences come from a type of question that has yes/no answers
(”Did it rain in . . . ”). We can actually write this in a formal way, in what
was done by telecommunications pioneers such as Shannon, Hartley and
Khinchin:

The amount of information h in a message is proportional to the
logarithm of the probability p of having received that message.

h = − log p

While the Information Theory does not specify a base for the logarithm,
and any base will do since it is only about proportionality, for us informatics
a base-2 seems adequate. Therefore, from now on, when we talk about
logarithm, we mean one based on 2. Moreover, we define the unit of this
information as ’shannon’ (Sh) or ’bit’ (b). Other units of information are
the ’hartley’ (Hart. Logarithm base 10, also called a ’dit’, short for decimal
digit) and the ’nat’ (logarithm base e).

Rain in London is very frequent so the probability is close to 100% and
the information in the message is nearly zero. Riad, however, is a dry place
and the info that it rained there is very high. Imagine it was only 1%
probable. Then the amount of information is 6.6 bit. Strange this may see,
since it is a one-bit-question, does it rain in Riad?

Yet, these are a posteriori observations. How much information is in a
message that I just received? More interesting from an informatics engineer’s
point of view is: How many bits of information will I need to send or save a
message that I do not know yet? An a priori question. In this case we talk
about the entropy of a message, the uncertainty we have about the possible
answer.

The amount of entropy H of a message is proportional to the

7.1. (QUANTIFYING) INFORMATION 147

weighted average of possible amounts of information it can con-
tain.

In other words, if there are n possible answers, each with pi probability of
occurring, the Shannon entropy is defined as

H = −
n
∑

i

pi log pi.

Take for example the flipping of a coin, it has two possibilities – heads and
tails – each with 50% probability of occurring (if the coin is fair). The
Shannon entropy of a coin flip is thus

H = −0.5 log 0.5− 0.5 log 0.5 = 1 b.

Moreover, if we get the result of a coin flip, for instance ”tails”, the amount
of information is also h = − log 0.5 = 1 bit. This is because the probabilities
were symmetric, all pi are equal to 1/n. Then the a posteriori information
is equal to the a priori entropy:

h = − log

(

1

n

)

= logn,

H = −
n
∑

i

1

n
log

(

1

n

)

= logn.

The Shannon entropy is maximum for a system with all-equal probabilities.
In case the probabilities are not equal, the entropy is always lower! Take for
example a biased coin, with heads occurring with 75% probability and tails
with 25% probability. The entropy is then H = 0.81 bit, 0.19 bit less than
that of a fair coin.

H = −p log p− (1− p) log(1− p),

with p the probability of heads. This function has a maximum at p = 0.5,
which is the case for a fair coin. (See Figure 65).

The difference between entropy and information, and the skewness of
probabilities can be used to compact data. If not all bit patterns have the
same probability, the information in the pattern is less than 1 bit per bit
and compacting can be done. A bitmap (bmp) image that is fully black (0s
for red, green and blue for all pixels, 000. . . 0000) can be compressed into
a much smaller lossless gif (graphics interchange format) or png (portable
network graphics) image, or a lossy jpg or jpeg (joint photographic experts
group) image that does not fully reconstruct to the original image. A file
that cannot be compressed has equal probabilities for all possible symbols
contained therein. We call such information streams ergodic*. Obviously,

*Ergodicity goes a little further than this. Imagine a stream of bits 01010101010. . . .
This obviously has equal probabilities of 0 and 1, yet is not ergodic, since the next bit
can be predicted perfectly on basis of the previous one and thus contains no information.

148 CHAPTER 7. INFORMATION AND MEMORY

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
ha

nn
on

 E
nt

ro
py

 /
bi

t

Skewness

Figure 65: Shannon entropy H as a function of skewness p in a binary
event, for example a coin flip. If the coin is always heads (p = 0) or always
tails (p = 1) the information in a coin flip is zero. For a fair coin, p = 0.5
the Shannon entropy of a coin flip is maximum.

the algorithm for compacting the data depends on the type of data. Zip files
are good for general data, png for images, etc.

Rather than using h, we can also define and quantize ’information’ as the
amount of uncertainty – that is, Shannon entropy – that is removed by the
message. The output of a NAND gate (if all input combinations have the
same 25% probability) is like our biased coin from above, biased towards 1
(75%), and the Shannon entropy is 0.81. Before I tell you the output of the
NAND gate, you have 0.81 bit uncertainty about the output value. For you,
the NAND-gate system is like a quantum mechanic probability wave function
of a superposition of states (the NAND gate representing our Schrödinger
cat) being both 0 and 1 simultaneously. When I then tell you that, after
all, it was 1, the uncertainty fully disappears. The state ’collapses’ into the
known state, namely 1. The probability distribution is now: 1 = 100%, 0 =
0%. The Shannon entropy is then

H = −0 log 0− 1 log 1 = 0,

thus ∆H = 0.81 bit of uncertainty has been removed. A priori, an AND
gate has 2.0 bit of input entropy and 0.81 output entropy. So on average
1.19 bit of information is lost in the AND’ing process. With the output of an
AND gate we cannot determine what the two input bits were. Well, in one
case we could (an output of 0 implies both input bits 1, but on average, in
entropy terms, 1.19 bit is lost). Note that, in contrast to computing, useful
communication (thus excluding prime time talk shows) consists of removing

7.1. (QUANTIFYING) INFORMATION 149

uncertainty, and maximizing ∆H per bit of data sent. We want to be able
on basis of our received data to ’recover’ what the data was emitted on the
other side of the communication channel. Not so for computing.

In fact, computers are destroying information by the sheer way they work.
If I write a computer program that processes all data (current and historic)
from all weather stations around the world and weather balloons and then
come up with a single prediction for the temperature tomorrow in my city,
obviously a lot of bits of information are simply lost in the process somewhere
and they are not recoverable (if not stored). We may hope that a tiny bit
of uncertainty is removed by the weather prediction, but unfortunately even
there the reduction in Shannon entropy is meager to say the least. Modern
weather forecasts can basically predict it will rain tomorrow in London. So,
maybe we should see a program as an artist sculpting a statue from a block
of marble, cutting away everything that is not needed, to leave a beautiful
piece of art. The laws of thermodynamics state that the pieces of marble can
never be put back into the original block. It is a one-way process. Likewise,
computing can produce beautiful results, but never again can the original
state be recovered.

As an example may serve the AND-gate that take two bits of information,
assuming they are independent and unbiased, the amount of information
they bring is 2 bit (4 possibilities – 00, 01, 10 and 11 – each with 25%
probability). At the output of the AND-gate, however, we have only 0.81
bit entropy (75% 0, 25% 1). See Table XXVII for the input and output
Shannon entropies of some basic circuits. The AND-gate is communicating
and erasing 0.81 bit of uncertainty. The rest, 1.19 bit, is lost forever (if
we do not store the input bits). An AND-gate, on average, destroys 1.19
bit of information. Seen at it from another way: if we write a program
that calculates the average of one hundred numbers, at the end we know
one number only. We cannot invert the calculation and reconstruct the
one hundred numbers. I’d know the average of the numbers but not the
individual numbers. Or simpler, with two numbers. If I tell you the sum of
two numbers turned out to be 8, you do not know if the numbers were 2 and
6, or 3 and 5, etc.

Yet, in some cases we can recover input data if we remember part of it.
We can recover the rest on basis of the output data, if the sum of output
entropy and the entropy of the remembered input part are equal or bigger
than the total input entropy. An example is the arithmetic operation sum
A+B. If we know the sum, say 10, and we know that B was 4, we can
recover the information that A was 6. As a curious consequence of this, we
can exchange the value of two variables without the need of a temporary
auxiliary variable. Imagine we want to swap the value of variables a and b

in programming. Most programmers will do this by

150 CHAPTER 7. INFORMATION AND MEMORY

Table XXVII: Amount of entropy at basic circuits

Operation Input Output
entropy entropy

(N)AND 2.00 0.81
(N)OR 2.00 0.81
XOR 2.00 1.00
HA 2.00 1.50
FA 3.00 1.81

temp = a;

a = b;

b = temp;

However, we can also do this by

a = a+b;

b = a-b;

a = a-b;

because one operand is preserved in the sum-and-attribute operations. Fol-
lowing this reasoning and seeing in Table XXVII that an XOR-gate has a
full bit of information at the output (as much as one input bit), we note that
only 1 bit of information is lost by the XOR’ing. Thus the XOR operation
is non-lossy in the context of the discussion here, and we can also exchange
two ’variables’ (bit patterns) by XOR operations that are significantly faster
than the arithmetic operations above:

C language:

a = a^b;

b = a^b;

a = a^b;

MIPS Assembly:

xor $t0, $t0, $t1

xor $t1, $t0, $t1

xor $t0, $t0, $t1

with ˆ the bitwise XOR operation. This is interesting. Information flows
from a to b and from b to a without mixing halfway. This is like having
two jars of wine in front of you, the left one with white wine, the right one
with red wine, and being able to exchange them without the help of a third
jar, and not winding up with rosé in the process. It seems to go against the
laws of thermodynamics in terms of entropy. Such tricks, as the one above,
are what Computer Architecture is all about. With a little bit of thinking
we came up with an idea to speed up exchanging of information. Imagine
this could be useful in a two-register architecture (like MOS 65xx that has
only X and Y registers) where XOR’ing inside the CPU outperforms access
to external memory. The only thing we are interested in is increasing speed
and reducing resources needed.

7.2. INFORMATION SIZES 151

7.2 Information sizes

As seen in the previous section, the minimum amount of information on a
discrete, binary computer is 1 bit. It stores the answer to a question with a
yes/no answer, i.e., two possibilities (irrespective of their probabilities). We
can now start joining bits to have larger units, with more possibilities.

When we join four bits, this is what is called a nibble and has 24 = 16
possibilities. Often it is used to store a BCD (binary-coded decimal) that
has 10 possibilities, 0 . . . 9, in which case we waste some combinations that
will never be used (see page 18).

Joining two nibbles or eight bits is called a byte and often (for some
historical reason) the referential unit of memory size. A typical computer
(today) has some 4 gigabyte of memory. We will use here the symbol ’b’
for bit and ’B’ for byte. In a byte we can store information of an answer
to a question that has 28 possible answers, or 8 questions with 2 possible
answers. It has to be noted that the number of possible answers – or states
– is limited. We always have to bear this in mind. Even when we look
at the entire computer, with 4 GB (32 Gb = 235 b) of storage, it is still a

finite-state machine. A 4 GB computer has 22
35

possible states.
The most important aspect of information size of a computer architecture

is: what is the size of the data the instructions work on. That is, if it
performs an ADD operation, what is the size of the operands? We call this
the word-size. Whereas bit, nibble, byte are standard concepts, the word
size depends on the architecture. The first architectures, like the Intel 4004,
used nibble-size registers and operations. Later architectures (like the 6510
used in the Apple and Commodore C=64) used byte-sized words. There is
a tendency to increase the word size. A Motorola 68000 had sixteen/thirty-
two technology meaning 32-bit registers and internal bus (and sixteen-bit
external bus). Modern computers using AMD technology have 64-bit buses.
It is unlikely that the word size will increase beyond this, because information
sizes of 64 bit are more than adequate in most applications.

7.3 External memory

The external memory (outside the CPU), random access memory (RAM)
is normally organized in packages of bytes. That is, the distance between
addressable information is 8 bit. If address 0x10000000 points to a place
in memory, 0x1000001 points to data 8 bits further on. (’0x’ means hex-
adecimal). However, few architectures nowadays use 8-bit sizes. Take for
example MIPS, the internal architecture of the MIPS processor is 32 bit
(ALU operations, registers as well as the instruction register). That means
that inside the CPU calculations are done 32 bit. In fact, the external bus
over which the data is communicated is 32 bit, so that 32 bits are copied

152 CHAPTER 7. INFORMATION AND MEMORY

simultaneously in one clock cycle from/to the CPU to/from memory. We
call this 32-bit/32-bit architecture with both the external bus as well as the
operations taking place in the CPU being 32 bit.

There is now a problem that is caused by the fact that the CPU is
organized as 32 bits (instruction register, program counter and all other
registers), but the main memory is 8-bit.

One immediate problem that may arise is that some data are smaller than
32 bits and only part of the data need to be fetched. This is a tiny problem
because the controller can just fetch 32 bit anyhow and just ignore the part
not needed. However, a more serious problem exists if we want to directly
fetch data that is in an address not divisible by 4 (32 bits divided by 8 bits)
and sometimes the hardware cannot deal with that. A fetch instruction to
address 0x10010001 might not be possible. In such cases we must apply data
alignment and place the data in the next address divisible by, in this case,
4, so 0x10010004, and waste 3 bytes of memory space.

This can also happen when the data is an instruction of program code.
If an instruction is smaller than the 4 bytes, we must data-align the next
instruction to start at an address divisible by 4. This can be done by placing
no-operation (nop) (pseudo)instructions in our Assembly source code. Note
that in some cases nop can also be used to delay the program. Maybe because
the data from external memory has not arrived yet. This is of course, more
the case in micro-code rather than macro-code.

Another problem that occurs is that, even if the data is of the correct
size (for instance 4 bytes) we do not know how the information is stored
into memory. Of the 4 bytes to store in a memory write, where do the
most-significant byte (MSB) and least-significant byte (LSB) go physically
in memory?

There exist two possibilities, as shown in Figure 66a that represents part
of memory here shown semi-linearly. A write or read from memory will
communicate a complete line of this memory, for instance from address 0
to address 3, each containing 8 bits. In so-called Big Endian, the MSB
goes to the lowest address, while in Little Endian this memory contains the
LSB. This naming comes from the book of Jonathan Swift’s book Gulliver’s

Travels. In the country of Lilliput the biggest debate of politicians was how
one should open an egg at breakfast in the morning; opening it at the big end
or at the little end. Of course, it is a completely irrelevant debate, but both
parties, the Big Endians and the Little Endians alike, took it very serious.

In our case it is also completely irrelevant; as long as it is consistently
done by the hardware, we couldn’t care less how the information is stored,
until we start looking at part of a word. Or when we communicate with a
computer using a different endianness. If we fetch (32-bit) information from
memory and start communicating it byte-by-byte to another computer of
different endianness that fills its memory with it, things might go wrong.
Figure 66b shows an example. The big-endian computer on the left has

7.3. EXTERNAL MEMORY 153

0

4

8

C

+� +� +� +
M!" L!"

"B# $%&B'%

�
4
8
C

+� +� +� +
L!" M!"

LB((*, $%&B'%

�
4
8
C

+� +� +� +
HOJ

 D $ F
O $ � �
� � � �
� � � 8��

�
4
8
C

+� +� +� +
HOJ

 D $ F
O $ � �
� � � �
� � � 8��

!,%&B%#

b-(,.b-.b-(,

/02 35 /02 356379:

;<

=<
N N

Figure 66: a) The difference between Big Endian and Little Endian storage
of information is caused by the fact of having a different size CPU and
communication bus architecture compared to that of main memory. In this
case, MIPS has a 32-bit architecture while the addressing distance of memory
is 8-bit. In Big Endian the MSB is stored at the smallest memory address,
while in Little Endian this memory element is occupied by the LSB. b) It
goes wrong when two computers of different endianness communicate byte-
by-byte; the LSB becomes the MSB, vice versa.

stored the information of JOHN DEFOE, age 23, office 264 into memory
(note the padding of the name by 0s; this in order to align the data to
addresses being necessarily a multiple of 4) and starts communicating it byte-
by-byte to the little-endian computer on the right. It sends the memory in a
string, first address 0, then 1, etc. Thus: first a J, then an O, etc. The little-
endian computer receives a J and stores it in address 0, etc. So far so good.
At the end it has completely copied the file of John Defoe. Now the right
computer wants to print the age of John. The poor guy has suddenly aged
quite a lot. The LSB (23) has become the MSB, and Jim is now 23×2563 =
385, 875, 968 years old, and the building in which he works must be rather
big, his office being 8× 2563 + 1× 2562 = 134, 283, 264. In other words, we
have to keep these things of endianness in mind when communicating with
other computers. Note that also the placement of ASCII characters can be
reversed, changing the name into ”nhoJfed ”. (Note the extra space). All
depends on the architecture.

❉

We can now look at how external memory is made up physically. Figure
67 shows a 4x4 memory chip (4 words of 4 bits each). At the top it is

154 CHAPTER 7. INFORMATION AND MEMORY

connected to a data bus of 4 bits from which it can read and to which it
can write. On the left an address bus of 2 bits determines which of the four
4-bit words is selected for reading or writing by means of a decoder. The
main component is a D-type flip-flop that copies the input at its D-terminal
to its Q-output when a clock pulse is received. Any flip-flop receives this
clock pulse if all the following conditions are met: the chip is selected (CS
asserted), the chip is programmed to write (RD cleared), and the correct
address is selected (determined by the four AND gates on the left). On the
other hand, if output is enabled (OE asserted), no flip-flop receives the clock,
but the output of the four selected flip-flops is copied to the data bus. In
that case, also the chip has to be selected (CS=1) and read disabled (RD=0).
Tri-state output makes sure that there is no data conflict with other chips.

We can use this chip of four by four memory, let’s call it M4x4 (Figure
68) to design a larger memory layout made up of many of such chips. The
essential idea is that CS (chip select) activates the relevant chip and the
address lines activate the relevant bit within the selected chip.

But let’s advance a little; the above example was only for purposes of
explaining how it works in principle. Imagine we have 1-GB (8-Gb) chips
that can communicate 32 bits simultaneously on the bus. It has 30 address
bits (1 GB), so let’s call it a M30x32 chip for convenience. We want to
use them in a 32x32 architecture with a total of 4 GB addressable memory
(RAM). That is, 32 address lines and a 32-bit data bus. We would need 4
such chips and thus use 2 address lines for chip-select logic. The rest of the
address lines are fed to all chips.

❉

In the above (specifically Fig. 67) we assumed that the memory elements
were made up of D-type flip-flops and this kind of memory we call static
RAM (SRAM). Static because the memory keeps it value as long as power
is supplied; no action has to be taken if no changes are needed. As we have
seen, a flip-flop is based on half a dozen of gates and each gate on half a
dozen of transistors, we can easily imagine a flip-flop to be made of thirty
transistors or more. New technology makes use of dynamic RAM (DRAM).
In this technology, a memory element is made of a single transistor con-
nected to a capacitor, the latter storing an amount of charge that represent
the memory state. Since a capacitor is basically a metal-insulator-metal
device, it resembles very much a metal-oxide-semiconductor transistor. In
fact, it can be made from a MOS transistor by joining the source and drain
terminals. A single-bit DRAM cell can be seen in Figure 70. They can then
be combined into a memory chip as seen in Figure 71. In a normal read
or write, the control circuit asserts the correct address lines to enable the
correct word for reading or writing. In idle mode, the control logic con-
stantly keeps cycling all words, reading their bits and capping the charge
in the capacitors. This extra, rather complicated, hardware is a small price

7.3. EXTERNAL MEMORY 155

A1 A>

address

?@C

D Q

Q
_clk

D Q

Q
_clk

D Q

Q
_clk

D Q

Q
_clk

D Q

Q
_clk

D Q

Q
_clk

D Q

Q
_clk

D Q

Q
_clk

D Q

Q
_clk

D Q

Q
_clk

D Q

Q
_clk

D Q

Q
_clk

D Q

Q
_clk

D Q

Q
_clk

D Q

Q
_clk

D Q

Q
_clk

data

bus

tri-stateOE
GI
KP

KP Q ShTU VWXWSYZ GI Q [W\]Z OE Q ^_YU_Y enable

w`cd
d

w`cd
f

w`cd
g

w`cd
i

KP GI OE

KP GI

Figure 67: Physical construction of a memory chip. In this case a 4 word
chip (2 address bits) each word made up of 4 bits (4 bit data bus). Three
control lines determine the flow of information: Without chip select (CS)
asserted, the chip will do nothing, not input, nor output. Read (RD) will
determine the choice between a read and a write operation. Output enable
(OE) will make the chip a talker on the data bus by controlling the tri-state.

156 CHAPTER 7. INFORMATION AND MEMORY

jk
lm
ln
op
qr

rs
rt
rm
rn

CS

j

Figure 68: A four-by-four memory chip of Figure 67. Two address pins
(A1, A0) determine which four bits of the four addresses will be put on the
data bus, or copied from the data bus (D3. . . D0). CS selects the chip, RD
determines between reading and writing, and OE allows the chip to talk on
the data bus.

to pay compared to the tremendous simplification of the memory elements
(compare Fig. 71 with Fig. 67).

The above memory elements are so-called volatile memory, which means
that information is lost when power is switched off. In some cases we want
the information to be permanent, or semi-permanent. The latter meaning
that information is not lost upon a power cycle, but even so information can
be written in it. In the case the information is permanent and cannot be
erased or overwritten, we call it read-only memory (ROM). The technology is
not very complicated and resembles dynamic RAM, but with the transistors
not connected to capacitors, but directly to ground (logical 0). Moreover,
the transistors data lines are also connected to a pull-up resistor, see Figure
72. That means that if there is no other thing connected to a vertical data
line, the voltage on the line will be Vdd (logical 1). If the horizontal line
coming from the address decoder is asserted (1), all transistors connected
to this line are switched on and the voltages on the vertical data lines are
low (Vss, logical 0) because it ’wins’ over the Vdd connections because it
has lower resistance. We can burn away the connections of the transistors
(indicated with a ×). In those cases, the data output remains high (logical
1). So, if we burn the connection (×) we get a 1 and when the connection
exists we get a 0.

We can use this approach in a full read-only memory chip. This is shown
in Figure 73. A cross (×) in this Figure indicates a burnt transistor con-
nection and thus a logical 1 at the output (if that word is selected by the
address decoder).

In other technologies, the user can write codes once after the virgin chip
comes from the factory. This is s-called PROM, programmable ROM. Other
versions also exist where the code can be erased by exposure of the chip to
ultraviolet light (EPROM, erasable programmable ROM) and in some cases
it can be done electrically (EEPROM, electrically-erasable programmable
ROM). The latter is done by having a floating gate at the transistors that
can store charge by applying a high voltage to it. This comes very close to

7.3. EXTERNAL MEMORY 157

CS uvyzv{
OE

|}
CS uvyzv{

OE

|}
CS uvyzv{

OE

|}d
e
c
o
d
e
r

A30

A31

~��

~�
~�

a
d
d
re

s
s
 b

u
s

D1

D0

D2

D30

D31

d
a
ta

 b
u
s

�� �����

�� �����

to

CPU

c
o
n
tr

o
l

��
��
�

��
��
��
� b

o
a
r�

�

CS uvyzv{
OE

|}

��
CPU

Figure 69: A full memory configuration. Four 1 GB-chips are joined to-
gether. A decoder determines which of the four chips is selected on basis of
the two most-significant address bits. All the others remain inactive. The
other 30 bits of the address are decoded to find the wanted bits inside the
chip and place them on the data bus or to store received bits into.

���

enable

�
�

Figure 70: DRAM 1 bit cell. Once a 1 is placed on the enable pin, the
transistor opens and the capacitor becomes accessible. It means that we can
read it (Q) or we can write into it (D), the same pin serving both functions.

the CMOS memory that exists in many modern camera’s. In that case the
charge at the floating gate comes from the light.

❉

From a historic perspective it is interesting to mention magnetic core
memories. They were based on the semi-permanent magnetizability of ferrite
cores, see Figure 74. Through each core pass four wires; X and Y ’address
lines’, a ’sense’ wire, and an ’inhibit’ wire. The polarization of these cores
could be programmed by passing a current through their center. Because this
process was non-linear (a recurring essential element in digital electronics),
the core is only programmed when the sum of magnetic fields from the
currents of all wires passing through them is above a certain threshold. To
select a memory location {X,Y} the corresponding lines are driven at half
current – ’half select’. Only the combined magnetic field where the X and Y
lines cross is sufficient to change the state of that core; other cores will see

158 CHAPTER 7. INFORMATION AND MEMORY

A1 ��

address
� ¡ ¢£¤£ � ¡¥¦ ¥�

¥§¥¨

Figure 71: DRAM chip. A control circuit, when no external request for
read or write is received, constantly cycles all memory addresses, reads them
and rewrites them to recharge the capacitors.

©ªª «¬ ©ªª «¬

©®® «¯©®® «¯

address

decoder

°± ±²°³²° ´µ¶°¶ ·²¸¹
connection

burnt

³²ºº»²³
resistors

Figure 72: Two bits in a ROM memory chip. If the horizontal line coming
from the address decoder is asserted (1) the transistors switch on and output
0 to the vertical data lines. However, if the transistor is burnt off (×), the
output will be 1 because of the pull-up transistor.

7.3. EXTERNAL MEMORY 159

a
d
d
re

s
s
 d

e
c
o
d
e
r

A1 A0

¼½
CS

¾ ¾ ¾ ¾

¿ÀÁÂÃ¿Äte

data bus

address bus

ÅÆÆÆ

ÆÆÅÅ

ÅÆÅÆ

ÅÅÅÆ

Figure 73: A 4x4 ROM chip based on the configuration described in Fig.
72. A × indicates a burnt-away transistor and thus an output of 1. Without
a × at the intersection between the data line and address-selected word line
the output will be zero.

only half the needed field, or no field at all. The direction of the sum current
then determines the bit value, for instance resulting clockwise magnetic field
as ’1’ and anticlockwise as ’0’.

To read a core state, the circuit tries to write a value to it, for instance
a ’0’. If the state was already ’0’, it stays ’0’. However, if the bit was
previously ’1’, the core changed magnetic polarity and this change causes a
voltage pulse on the sense line. The detection of the pulse meant the state
was read as ’1’. It is obvious that after a read, the state is always ’0’ –
memory access is then called a ’destructive read’ – and thus the state ’1’
has to be rewritten if that was the read state. To write a ’1’, the currents in

sense
ÇÈÉÇÊÇË ÌÍ ÌÎ ÌÏ ÌÐ

ÑÍ

ÑÎ

ÑÏ

ÑÐ

Figure 74: Magnetic core memory.

160 CHAPTER 7. INFORMATION AND MEMORY

the X and Y lines are driven in the opposite direction, to cause an opposite
magnetic field compared to the (write ’0’) reading phase currents. To write
a ’0’, together with the X and Y currents an equal intensity ’inhibit’ current
is supplied by the inhibit line so that the total current is only half of the
threshold voltage to program the core.

The magnetic-core memories had an access frequency of about a MHz,
and some kilobits of total memory. Because of their high cost of fabrication,
by the end of the 1970s they were no longer used and are only described
here for historic reasons, and to show that transistors are not the only way
to implement (binary) logic.

7.4 Internal memory

As we have seen, external memory – outside the CPU – consists of either
D-type flip-flops (SRAM) or capacitor-transistor pairs (DRAM), with the
latter being significantly slower but also significantly cheaper. Inside the
CPU, there are ultra-fast registers (D-type registers).

Apart from that, most modern advance architectures have so-called cache
memory. To explain why this exists, let’s do a calculation. Executing a pro-
gram in a computer consists of fetching instructions and data from memory
and storing data resulting from calculation back into memory. The bot-
tleneck in the overall speed of the computer – the so-called Von Neumann
bottleneck – is the speed of communication between CPU and memory and
this has real physical limitations. To give you an example, if the memory
card is 10 cm away from the CPU, it takes (0.1 m)/c time for the request
for information to reach the memory chip, and an equal time for the data
(or instruction) to be sent to the CPU, even if the presentation at the out-
put of the memory chip is immediate. With c the speed of light (equal to
3× 108 m/s) that is twice 0.33 ns and the maximum processor speed would
be 1/(0.66 ns) = 1.5 GHz.

To circumvent this, engineers have invented cache memory. That is a
relatively small amount of memory inside the CPU that holds a copy of
external memory. In most cases we are working on a tiny part of the vast
external memory, so if we keep a copy of this locally and every now and
then synchronize the two (external memory and cache), enormous speed
increments can be achieved. Of course, the price to pay is a larger overhead
– control logic – inside the CPU. To make things even more complicated,
since the closer the memory is to the ALU, often several levels of cache are
present in the CPU. Each level further away from the ALU, bigger in size,
and slower. A complicated control logic (running on microcode) is actually
doing predictions about what memory is going to be needed in the future.

Another technology is to avoid the CPU altogether. Imagine we are
reading a file from a hard disk, maybe a word processing program or so.

7.5. SOFTWARE ASPECTS OF MEMORY 161

Instead of the CPU reading a byte from disk and writing it in memory
(twice using the data bus; a read from disk and a write to memory), in
direct-memory access (DMA) a channel is opened between hard disk and
memory and a stream of data is poured directly into memory, without any
byte ever going through the CPU; the CPU merely sets up the channel by
communicating to the controller on the motherboard what it wants. Apart
from the fact that it is directly twice as fast, it also liberates the CPU for
doing other things. This is especially possible when the CPU has a cache
and needs no connection to the data bus, which is occupied by the DMA
transfer.

7.5 Software aspects of memory

After having described the hardware aspects of memory, let us now take a
look at the ’software’ aspects. The way the memory looks like in terms of
organization. Remember, Computer Architecture deals with both hardware
and software.

The first thing to observe is that the external memory holds both the
data to be processed, as well as the program code (instructions). We call
this a Von-Neumann architecture (or Princeton architecture). The technical
description is ”any stored-program computer in which instruction fetch and
data fetch cannot occur at the same time because they share a common bus”.
If we want to load a piece of code in the instruction register, or a piece of
data in a data register, these bits are transfered over the same (data) bus.
Contrasting this is a Harvard architecture that has two separate buses for
data and program instructions. Before Von Neumann data was stored in
memory (for instance in magnetic cores) and the program was mechanically
entered by engineers by setting switches. Von Neumann realized this is too
cumbersome and inflexible. Why not have the program residing in the same
memory so that it was physically indistinguishable from data.

In a Von Neumann computer it is possible that a program changes itself,
since both reside in the same physical memory and use the same physical
communication bus with the CPU. I would strongly advise everybody to
avoid this ’dirty programming’ technique, which fortunately is anyway made
impossible by most of the assemblers. That is, it is a software limitation (of
the Assembly compiler) and not a hardware limitation.

On the other hand, lifting this limitation allows for the concept of mixing
data with code, as in object-oriented programming (OOP). As we know, a
structure in C (or record in Pascal) consists of a set of data of different type.
Each piece of data in a so-called ’field’. In object-oriented programming,
an ’object’ can contain data fields (’properties’), as well as function code
(’methods’). So, instead of printf("%s", stringptr), with printf the
function and stringptr the (pointer to the) data, we would have a String

162 CHAPTER 7. INFORMATION AND MEMORY

data bus

m
e
m

o
ry

data

code

CPU

address bus

Ò
Ó
Ô
Õ
Ö
×
Ø

a
n
n

a
rÙ

Ú
ÛÜ
Ö
Ù

tu
rÖ

Ý

ALU

Figure 75: A typical Von Neumann architecture. Both code and data
reside in the same memory and are transfered to the CPU by the same data
bus, but they are in different parts of memory, the code segment and data
segment relatively.

object that if we want to print it we’d call the print ’field’: myString.print.
The point is that data and code are logically mixed and can even be so
physically (although technically speaking still not necessarily).

Classically, while data and code reside in the same physical memory, they
do so at clearly separated addresses. We normally have a data segment as
well as a code segment. And the code acts solely on the data. A program
reads and writes in the data segment. However, this cannot be an absolute
requisite, because if that were the case, how does a program get loaded
into memory?! It must be so that a program (which we call the operating
system, OS) loads the code from disk and puts it in memory. Now, for that
OS program, the code of the program is data. It operates on it, albeit rather
simple operations (load-store, if no DMA is used). Obviously, a program
(at least those of the OS) must have a permission/possibility to write in the
code segment.

The address of an amount of data can also be called data. This type of
data or variable we call a pointer. We already know this from C language. If
we declare an array – of chars, called a string, or maybe a two-dimensional
array of floats – the compiler remembers the pointer to the start of the array.
Take for example the C declaration

float a[3][3]

What the compiler does (translating it to Assembly or directly to machine
language) is

• Reserve space in memory so that next declarations are saved further
down in memory. This ’reserving’ is nothing more than advancing
the compiler status value of the next-available address by the amount
needed. Declaring a float, for example, advances this value by the size
of a float (4 bytes). (Real memory allocation is done by the operating
system; at the time of loading the compiled program the OS is allocat-
ing memory for it, for both the code and the data segment. Dynamic

7.5. SOFTWARE ASPECTS OF MEMORY 163

ptr
a[0][0]

.....

..........

.....
ptr+4

a[0][1]
.....
..........
.....

ptr+8
a[0][2]

.....

..........

.....
ptr+12

a[1][0]
.....
..........
.....

ptr+16
a[1][1]

.....

..........

..........

.....

Figure 76: The mapping of a multidimensional array onto linear memory.
The compiler or Assembly programmer has to calculate where elements re-
side. In this case an array a[][3] of floats. Note that the first dimension
size does not need to be known for the calculation.

memory allocation is done at run-time by the program by calling the
OS through the malloc() function).

• Remember the starting address of the array in a label-look-up table,
so that every time it now finds a reference to the array in the source
code, it substitutes this address

• Remember the specifications about the dimensions (except the first
one, as we will see) as well as the size of one element (for instance, a
float is 4 bytes).

If a user is making a reference to an element of the array, the C compiler
adds code to calculate the physical address of the element. In Assembly we

have to do this calculation!
How is this done? Remember that memory is a linear vector; a memory

element only has one index/address. Therefore we – the Assembly program-
mers, not the higher-level programmers – have to calculate the address, to
do a mapping from n-dimensional array to 1-dimensional memory space.
Figure 76 shows how this is done. Assuming that the first index of the array
(the line number) has higher significance than the last index (column) and
the array starts at address ptr, float element a[i][j] resides at

address = ptr + sizeof(float)*(numcol*i + j)

As you see, we need to know the number of columns (numcol) but we do not
need to know the number of lines (numlin) in the array. Now you know why
in C we can pass arguments to functions as, for example in this function
declaration:

164 CHAPTER 7. INFORMATION AND MEMORY

int function(int p[][3]){

p[1][2] = ...

}

after which we can use element p[i][j]. We can, but we do not need to
specify the number of lines, since it is not needed to calculate the address of
any element in the array. Of course, the programmer has to be careful not
to overwrite the adjacent objects. Assembly permits everything. (YWIYGI
paradigm; you wanted it, you got it). The function merely receives a
pointer p and the compiler (sic) takes care of calculating where element
p[i][j] resides. For that it needs to know the number of columns. An
alternative form would be letting the C-programmer calculate it

int function(int *p, int numcol)

and the C-programmer has to calculate the address; p[i][j] is in reality
p[j*numcol+i]. Try it out! This last version above is the closest thing to
Assembly. By now you should have understood that the following is not
allowed:

int function(int p[3][])

because the address of elements cannot be calculated. Note also that

int function(int x, int y, int p[y][x])

is not allowed (in C) because, although it makes perfect sense for humans,
a compiler does not know how to deal with it statically. Only with the
introduction of dynamic programming languages such as C++ are the above
declarations permitted. An object int-array with dimensions x and y will be
created at run-time, the time at which the size of the object is known.

7.5.1 Heap and stack

There are two way things can be placed in the data segment in memory:
heap or stack. The heap is what we can call ’classic’ memory. Any object
can be referenced at any time. It is classic RAM (random-access memory).
When a program is compiled, memory is reserved for the objects in the data
segment and pointers to the objects saved, as described above. No value is
saved in it (no initialization of ’variables’ is taking place). This way of data
organization on the heap is called static memory allocation. The amount of
reserved space is constant during the program. It can be rather inefficient,
because we might not know how big the data is that we are going to process
and we would then always have to reserve space with the maximum size we
can imagine, even if we are just going to find the average of an array of 2
elements, we’d have to do the equivalent of declaring an array of a million

7.5. SOFTWARE ASPECTS OF MEMORY 165

elements (and thus occupy the data segment with a million zeros), reserving
space for a million elements in RAM.

Memory can also be reserved at run time. The procedure is similar to
the one above and is called dynamic memory allocation. We have a static
pointer-type variable in the heap and make a system call to the operating
system to reserve space for us on the heap at run time. The operating system
will return the address of the start of the allocated memory to the calling
program and that program can now use the memory at its leisure. This is
a dynamic way of reserving space and that enables consuming the memory
with exactly the amount necessary, never claiming unneeded memory. The
equivalent in C is the malloc() function call. And, as we know from our
C lectures, don’t forget to release the memory once it is no longer needed.
Fortunately, the C compiler is adding code to our program to do that at the
exit of our program. If even that fails, the operating system keeps track of
what process reserved what memory and if the process or thread crashes,
the operating system cleans up our mess.

A third way of reserving space in memory is by placing the objects on the
stack. This is the most flexible and allows for recursive function calls, where
each function call gets its own set of local variables. It works as follows.

A stack is a place in memory where we only have access to the top. We
can place a new item on the stack, or we can remove the top items, but
otherwise we cannot do anything. We do not have access to items below.
Now, imagine what happens when we call a function sum that has three local
variables a, b and c.

int sum(){

int a;

int b;

int c;

<...code...>
}

The moment – at runtime, so dynamic allocation – the function is called,
the local variables are placed on the stack at the address pointed to by the
stack pointer ($sp) and the stack pointer is adjusted to the last item on
the stack. The variables work as one item and can all be accessed by the
function called. See Figure 77. They stay on the stack until the end of
the function, whence they are ’deleted’ (that is – why waste effort – simply
the stack pointer is adjusted). It is obvious from the way the stack works
that only the last item can be removed. That is why this type of memory
organization is called last-in-first-out (LIFO).

The interesting thing is that this allows for recursive function calls (func-
tions calling themselves). As can be seen from the Figure , each function call
has its own private set of variables. Moreover, it cannot access the variables
from the function below it. Recursivity is difficult to implement without the
concept of a stack and was thus an emergent property when the stack was

166 CHAPTER 7. INFORMATION AND MEMORY

Þßà Þáà

Þáàâ
ã
a

Þáàâ
ã
a

Þáà

â
ã
a

â
ã
a

Þáà

ßäåâæçèå
âéêê

ßäåâæçèå
âéêê

ßäåâæçèå
ëìçæ

ßäåâæçèå
ëìçæ

Figure 77: When a function is called that has three local variables, a, b
and c, these are dynamically (at run time) placed on the stack at the place
pointed to by the stack pointer $sp. Once the function terminates, the items
are removed from the stack. This allows for recursive functions, where every
function call has its own private set of variables. The frame pointer $fp

always points to the bottom of the stack and keep an eye on avoiding stack
underflows (removing an item that does not exists on the stack).

invented. Moreover, the idea of local variables is also easily implemented.
The main program (the one that calls the function) does not have access
to the local variables of the function, because they do not exist yet! The
functions do have access to the global variables because they are placed on
the heap and exist as long as the entire program is running until it is ’killed’
by the operating system.

Placing an item on the stack is called ’push’ and removing it ’pop’. A
function call pushes local variables on the stack and leaving a function is
popping them off the stack. Often a frame-pointer ($fp) is also used. This is
a constant pointer (within the context of a program) and allows for checking
if we do not get stack underflow (trying to pop off the stack more items
than exist there). Some program languages, such as Forth and Postscript (a
printer language), uniquely use the stack and can be called stack-oriented
programming. It is quit an interesting concept but takes some time to get
used to.

The stack itself is created somewhere in RAM. Our program has to spec-
ify how much stack it will need and the compiler adds a malloc() at the
beginning of our program to reserve that amount of space in memory, and
saves a pointer to the bottom and top of the stack. In fact, if we have stack-
checking option switched on in our compiler, code is added to our program
that verifies if the actual stack pointer is not outside these limits, generating
a stack-overflow exception in case it is outside this range.

7.5.2 Garbage collection, paging, and overlays

In modern computers many programs are running ’simultaneously’ (that
is to say they are all residing and memory and get alloted time slices of
processing). These are called processes or threads, the difference between
them being that threads share memory while processes do not. So a process

7.5. SOFTWARE ASPECTS OF MEMORY 167

príîïðð
A

príîïðð
ñ

príîïðð
ò

príîïðð
A

príîïðð
ñ

príîïðð
ò

óôõöôó÷

øùúú÷øûüùý
þ
ÿ
þ
m
�
�

Figure 78: garbage collection. Processes and threads are relocated in
memory to leave less small gaps and leave space for big programs.

can have many threads, but a thread belongs to a single process.
The problem with threads and processes is that they are created and

become extinct dynamically. Every time a thread is created (by the oper-
ating system), space is reserved for it in memory (the heap). And because
the threads and processes are not necessarily destroyed in the (reverse) or-
der they were created, gaps can fall in the memory space. To clean up this
swiss-cheese structure, the operating system every now and then performs
what is called a ’garbage collection’. It relocates all processes and threads
so that hey are nice adjacent and no holes exist. See Figure 78. Now if a big
program starts, there will be place for it in memory. This concept is very
similar to disk defragmentation techniques that were very common in older
hard disk architectures.

Of course, moving a program from one place in memory to another has
to be done with care. In case the program has absolute addressing methods,
these might have to be translated and the address references updated. For-
tunately, most programs use relative addressing modes and we can simply
shift the entire program to a new place; garbage collection does not affect
the functioning of the programs.

Another way of avoiding problems when moving processes in memory is
by having dedicated hardware to translate logic addresses, as referenced by
the code, into real physical addresses by a so-called memory-management
unit (MMU). The code makes a reference to a certain address and the MMU
translates this into a physical address. This way, when a process is moved
in memory, the code can stay the same, only the MMU has to be informed
about the new location of the process in memory for it to be able to do correct
address translation. The x86 Intel family used such paging techniques but
recent versions (AMD 64) have dropped most functionality of this type.

However, such techniques also allow for something that is called virtual
memory. When an address is referred that is outside the range of physical
addresses they can be loaded from the disk instead, possibly loaded entire
pages at a time (for instance 4 MB) instead of loading individual bytes.

168 CHAPTER 7. INFORMATION AND MEMORY

U��T

0x0000

0x4000

0�����

0�����

a15

a12

a11

a0
��	

CS

addre��
b��

data
b��

d0

d

serial ports

COM1

COM3

to CS of memory chip(s)

Figure 79: An overlay consists of shadowing the RAM memory and acti-
vating a hardware chip for certain addresses only. In this case a UART.

This applies to data as well as code and was invented by researchers at
Manchester.

Another technique often used with respect to memory organization is
overlays. When a certain range of addresses is referenced, instead of the data
coming from and going to the memory, it actually goes to other hardware,
which then deals with the data instead of just storing it in memory. As an
example might serve an UART, universal asynchronous receiver/transmitter,
better known as the hardware that takes care of serial communication (COM
ports, etc.). Figure 79 shows this more clearly. If the first bits of the address
are 0100 (0x4), the memory chip is deselected and the UART chip selected.
Then writing in address 0x4000 may be transmitting a character on serial
port COM1, reading from 0x4001 receiving from that COM1, writing in
0x4002 transmitting through serial port COM2, etc. Other addresses may
be used to set up the communication ports (bit rate, parity, stop bits, etc.)
This system is called overlay because the UART overlays the memory, as it
were. The overlay hardware can be switched on and off by the controller, or
by writing in a specific memory address. When switched off, the underlying
memory becomes visible and accessible again.

7.5.3 Addressing modes

To finish the chapter and come full circle back to information, let’s take a
look at how a program (or better to say an Assembly program) can access
the operands. There are basically four addressing methods:

• Register: The operand is in the register specified

• Immediate: The operand is part of the instruction code and is in the
instruction register

7.5. SOFTWARE ASPECTS OF MEMORY 169

addr2

o������

register:

i�������io� �eg:

addr1

indirect indexed

memory:

register

o������
register:

i�������io� �eg:

memory:

o������

register:

i�������io� �eg:

immediate

memory:

o������
register:

i�������io� �eg:

addr1

direct indexed

memory:

indirect immediate

addr2

o������

register:

i�������io� �eg:

addr1

memory:

direct immediate

register:

i�������io� �eg:

addr1

memory:

o������

Figure 80: Some examples of addressing modes in Assembly. How the
operand that will be used in the operation is referenced.

• Direct: The operand is in the address specified. This address can
be part of the instruction (’direct immediate’) or a register specified
(’direct indexed’)

• Indirect: The operand is in the address that is stored in the address
specified (that can again be immediate or indexed)

Some architectures have limited addressing modes, while others, can have
very complex instructions. Figure 80 is not exhaustive.

8| Hardware/software as-

pects

When a theologian and a philosopher argued about the creation of the uni-
verse, the theologian said "The universe is so complex, it must have been
God as creator". To which the philosopher answered, "O, and who created
the complex entity of the Creator?!"

This small anecdote brings us to a pertinent question: How do we start
up the computer? Where does it get its program, or first program from?
After we have a program in memory, this program can be something that
loads other programs, but how do we start it all? What happens when we
press the power button and switch on the computer? How can it be that
after a while we have a screen with an operating system running? (And in
Windows that while can be a little longer compared to Linux). The RAM
that stores the program, as we have seen in the previous chapter, consists of
flip-flops and dynamic RAMs, either losing all information when the power
is removed. That means, when it is switched on it is all filled with 0s (or
maybe 1s), maybe all instructions being addi $0, $0, $0 with the program
counter pointing at address 0.

The computer needs a way to pull itself out of a zero/reset state. This
procedure we call bootstrapping, named after the story of Baron von Münch-
hausen who pulled himself and his horse out of the swamp he was sinking
into by the straps of his boots.

The way a computer does this is by having a minimal program (maybe
some kB only) in unerasable read-only memory (ROM). This code has as
only task loading the real code into memory. It is so tiny that it cannot even
do this simple task. What it is doing is actually loading the small program
into memory that then loads the operating system. This small program
resides on a hard disk or maybe a USB pen and is called a boot loader.
This is a very flexible way of organizing the software that will run on the
computer, specifically the operating system because changes can be easily
made to the operating system. Bugs can be fixed, functionality (and new

171

172 CHAPTER 8. HARDWARE/SOFTWARE ASPECTS

R��

����
strap

code

���� !"��# w/

���� $�%&!#

operating

system

reset

'()*

Figure 81: Bootstrap code in ROM is executed that has as only task to
load the bootloader from disk. The bootloader in its turn loads the operating
system. The operating system loads the user programs to be executed.

bugs) can be added. The only requisite is that the bootloader resides on a
specific place on disk, the boot sector. See Figure 81. Once the operating
system is loaded, it takes care of loading the user programs.

The bootstrap code in the computer is part of the BIOS ROM (basic in-
put/output system), a special chip with the most elementary operating code.
It contains all the system calls like input and output (screen, mouse, disk,
keyboard, timer). Also sometimes called firmware (part of the operating sys-
tem that is non alterable, or not easily alterable). Modern computers have
an UEFI (Unified Extensible Firmware Interface) instead of a BIOS, which
has higher security and some added features, such as support for larger disk
sizes (UEFI is not limited by the 2.2 terabytes of BIOS as it can support 9.5
zetabytes).

8.1 Interrupts

The BIOS also takes care of hardware interrupts. These are electrical sig-
nals to the processor that an important event occurred that needs immediate
attention. The processor interrupts the current task – hence the name ’in-
terrupt’ – so that the event can be handled in a timely manner. It deals
with the interrupt at an IRQ (interrupt request). The CPU saves the state
it is in (program counter, register values, etc.) and starts executing the
code of the interrupt handler by setting the program counter to the appro-
priate interrupt service routine (ISR). In more modern computers, besides
hardware interrupts with an electric signal on a pin of the CPU, there also
exist software ’interrupts’, which are called ’exceptions’ and are treated by
event handlers. The idea is the same, the normal flow of the program is
interrupted by something that requires attention.

In Intel x86 architecture the starting addresses of the ISRs are written
in an interrupt table, or interrupt vector in BIOS. It specifies for every type
(value) of interrupt – both hardware and software – where in memory the

8.1. INTERRUPTS 173

interrupt handler routine resides. As an example, for Intel x86 architecture
the following interrupt requests (IRQs) exist:

Intel x86 hardware interrupts

IRQ 0 System timer IRQ 8 Clock
IRQ 1 Keyboard controller IRQ 9 ACPI (advanced)
IRQ 2 Cascaded from IRQ 8-15 IRQ 10 Peripherals (SCSI..)
IRQ 3 Serial port 2 IRQ 11 Peripherals (SCSI..)
IRQ 4 Serial port 1 IRQ 12 Mouse
IRQ 5 Parallel port or sound card IRQ 13 CPU float
IRQ 6 Floppy disk IRQ 14 ATA (HD/CD)
IRQ 7 Parallel port IRQ 15 Secondary ATA

A common problem is, what to do when an interrupt interrupts another
interrupt? Even though interrupts have priority (a lower-priority interrupt
cannot interrupt a higher-priority one) the system can freeze up. It is a
quite complicated task that in x86 architecture is managed by a specially
dedicated chip, PIC (programmable interrupt controller), integrated on the
motherboard.

Many exceptions (especially the software ones) can be left unattended,
but some of them must be dealt with. We call these ’trapped exceptions’.
A trap handler must take care of it. You will notice it when you leave out a
trap handler in your higher-level language program. The compiler will refuse
to compile your program. In earlier days it would compile and then when
the trap event occurred the program would terminate and control returned
to the operating system. An example is a division-by-zero error, or null-
pointer assignment (trying to write in address 0x0000. . . 0), or I/O errors
(file not found or not allowed to write to), or a stack overflow. Less severe
are range-check errors (like the addition of two integers that does not fit in
an integer).

In summary, many events can cause interruptions of normal program
flow. The simplest (hardware) ones are that data from the disk are ready or
a keystroke occurred or a mouse moved. Some events are more critical than
others. Some are hardware triggered with directly an electric signal to a pin
of the CPU, others are software triggered. In normal conditions, flow of the
program is interrupted by the PIC or CPU, meaning the state of the CPU
is saved (program counter, registers, etc.) and the event dealt with. After
it has been dealt with, the interrupted program continues.

Interrupts can also be triggered by software. See Appendix E for a small
list of x86 architecture software interrupts. An interesting one is MS-DOS
interrupt 0x21 (or 21h in x86 jargon). This interrupt is actually a set of
interrupts, the one we want is specified by the AH register. It mostly deals
with I/O functions, but also includes a way to change any interrupt to make

174 CHAPTER 8. HARDWARE/SOFTWARE ASPECTS

+,-. /12

graphics
memory

C3/

controller

45-

45-

control

lines

Figure 82: A simple diagram of a bus.

it point to our own interrupt handler. By placing 0x25 in register AH,
the interrupt we want to change in AL and the address pointer (segment
and offset) of our handler routine in registers DS:DX and then triggering an
interrupt 21h we will set the entry AL in the interrupt vector to our interrupt
handler routine. We could also directly ’poke’ this into the interrupt vector
table, the address of AL-interrupt routine is given by offset = 4*intnum,
segment = 4*intnum+2.

The idea of interrupts is very useful. The alternative to interrupts is
what is called ’polling’. In that case, the CPU itself is regularly checking if
there is nothing important going on. The advantage is that the hardware
and organization are much simpler and it is more flexible. The disadvantage
is that the CPU wastes a lot of time on checking things that do not need
attention. With interrupts, CPU time is never wasted. Events will only be
processed when they occur, which maybe once in a million years, or maybe
even never.

8.2 Bus

We have already seen it mentioned in the section on computers how a bus
connects various devices over the same set of physical tracks. A bus is a set of
communication lines between various components or parts of the computer
or parts inside the CPU. Typically, a bus connects a CPU with the external
memory, with a graphics card, a hard disk, and external components like
USB pens. Because all devices connected to it can put data on the bus the
bus is multi-directional. Imagine a CPU writing to a USB pen and later the
data from the USB pen is copied to memory. That means the devices are
connected to the bus by tri-state (see Chapter 4). Theoretically it would also
be possible to do with multiplexers but that is too complex a technology.
The logical layout of the bus looks like something in Figure 82. Many devices
connected to it. A bus controller (not necessarily the CPU) manages it.

The bus controller determines which device is allowed to ’talk’ and has

8.2. BUS 175

N6789:7;<=>

?@A

S6B89:7;<=>
IDE

SFGF
HJK

Ethernet

JLM DIO

PQV@?WX>

@?W

YWZS W[Z
serial

parallel

\oppy

keyboard

]^_`a

ocfghjld
cables

ocfghjld
cables

FSY

FSY

YSY
np

cache

qrs
core

qrs
core

qrs
core

qrs
core

?@A

tuv
interface

Figure 83: A diagram of an Intel-x86/AMD64 motherboard bus hierarchy.

low-resistance output by asserting its OE (output enable) line. All the oth-
ers do either nothing or are listeners (when their chip select lines CS are as-
serted), in any case they have high resistance tri-state at the output. There
can be many listeners, but only one talker. In normal circumstances there
is one talker and one listener.

Intel x86 and AMD 64 architectures even have a hierarchy of buses (see
Figure 83). Well-known bus architectures are VME (Versa Module Eu-
ropa), ISA (Industry Standard Architecture), EISA (Extended ISA; for 386),
Microchannel, PCI (Peripheral Component Interconnect), SCSI (’scuzzy’,
Small Computer System Interface), ATA-PI (Advanced Technology Attach-
ment - Packet Interface), SATA (Serial ATA), PATA (Parallel ATA, better
known as IDE [Integrated Drive Electronics]), IEEE487 (Institute of Elec-
trical and Electronics Engineers, standard 487), PCI-express, AGP (Accel-
erated Graphics Port). They differ in speed and control command language.
A motherboard can even have more than one of those buses. To connect
them to the main bus, a modern motherboard has two controllers, called
North Bridge and South Bridge. The Northbridge (or memory controller
hub) connects to the CPU through a front-side bus (FSB) and to RAM and
through a fast PCI-Express bus to advanced graphics cards. It also connects
to a Southbridge (or I/O controller hub) that in turn connects to slower com-
ponents such as PCI buses, USB interfaces, ISA buses, IDE hard disks, the
BIOS, Ethernet connections and legacy devices.

The CPU itself also has internal buses. The FSB mentioned above is the

176 CHAPTER 8. HARDWARE/SOFTWARE ASPECTS

interface with the outside world and connects internally to the bus interface
and level 2 cache. This interface connects to the inside of the CPU, namely
the CPU core (with ALU and registers) and level-1 cache, through a back-
side bus (BSB).

Further down the hierarchy we can find drivers for external equipment
such as USB hubs and Internet interfaces (Ethernet and WiFi). The dis-
tances are getting greater and the devices connected (and bus technology)
thus slower. The SATA hard disks are relatively slow (compared to memory
and advanced graphics such as PCI-e and AGP), and even further down
the hierarchy we find the very slow BIOS, legacy ports (such as serial and
parallel ports, floppy disks and (non-USB) mouses (not ’mice’, by the way)
and keyboards.

8.3 Communication

From there devices can be connected off-board and distances get larger and
speeds lower (remember Einstein’s speed-of-light limitation). Moreover, sim-
ple metal track on plastic PCB (printed circuit board) no longer works. Typ-
ical distances become 1 meter for USB to 100 meters for Ethernet cables.
Such cables, moreover being external, work like antennas and catch a lot
of interference and noise. In fact, given here without proof, the Shannon-
Hartley channel capacity of the communication channel (in bits-per second)
is given by

C = ∆f log2 (1 + S/N)

with ∆f the physical bandwidth of the channel in hertz, S the signal strength
(watt), N the noise level (watt) and S/N the signal-to-noise ratio. To
increase the communication speed, we can thus increase the channel width
(if it does not start overlapping with other channels), increase the signal
strength (if people do not start getting paranoid about radiation and we
have enough money and power available) or reduce the noise. To overcome
the problem of noise, two things are normally done. One hardware and one
software:

Cables come in pairs, so called twisted pairs. One wire carries a (current)
signal (I1 = +S), while the other carries the same signal, but with an opposite
sign (I2 = −S). Because wires are close together, they catch the same noise
δN . A differential amplifier, A, then amplifies the signal and eliminates the
noise: A× (I1− I2) = A× ([+S + δN]− [−S + δN]) = 2AS. As an example,
a standard USB cable has one twisted pair (for bidirectional data), a +5 V
power supply, plus ground, giving four wires in total. Ethernet (RJ45) is
similar. It has more wires but only one twisted pair for data called H and
L.

The other way to overcome the problem of noise is by software. The
technique is to add redundant information to the data packages. This re-

8.3. COMMUNICATION 177

wxyx zwxyx {

Figure 84: Twisted pair. The same signal is sent over both wires, but with
opposing current polarity. Because the noise has the same polarity it can be
filtered out by a differential amplifier. (Image: Wikipedia).

dundant information is fully predictable when we know the other bits of
the package and thus have no entropy (see the section on information and
entropy, Section 7.1). Yet, if something goes wrong in the communication,
and bits arrive wrong, the other side can detect and sometimes even correct
errors.

In a general cyclic redundancy check, CRC, n bits of redundancy are
added. Similar algorithms, like MD5 add redundancy in a cryptographic
way to protect the data from intentional alterations rather than protect it
from unintentional errors as in CRC. The simplest form of CRC is parity
check. Parity checking is thus CRC1. For every package of bits an extra
(redundant) bit is added to make the total number of 1s even. It contains
no new information, but is just added as a check. A 1 is added if the other
data bits have an odd number of 1s and a 0 is added when the number of
1s was already even. Example of such an E81 (even parity, 8 data bits, one
stop bit) serial communication string is

01110110 1 0

The first 8 bits are the data, the next 1 is the parity bit (a 1 to make the
number of 1s even, namely 6) and the 0 is the stop bit (used for synchro-
nization). Now if something goes wrong in the communication, it can be
detected. We do not know what went wrong, but know that something is
wrong if we receive a package

01100110 1 0

The parity does not check. The receiver obviously does not know the original
package. (If the package was known to the receiver, it would contain zero
information, because the probability of the [intended] message being that
package is 100%; why send a message the other side already knows?!) But
something is wrong because the parity does not check (five 1s, which is odd,
if not to say strange). The receiver cannot recover the data. It does not
know which bit is wrong (may even be the parity bit!) The only way to
proceed is to ask the sender to resend the message. This is only possible
in bidirectional communication channels, and can be rather slow, especially
when we are in a stream of data (the first bit not yet arrived and the nth bit
already sent). But what about one-to-many unidirectional channels, such
as radio and television broadcasts or compact disks? moreover, the above
scheme can detect single errors. What if there were two errors – two bit flips
– in communications?

178 CHAPTER 8. HARDWARE/SOFTWARE ASPECTS

d1

d2
|}

d4

p1 p2

~}

1

0
0

0

1 1

0

1

0
0

1 1

0

��� �������
������� ���� bits

������� ������ ����

� B

Cintersection of

circles with parity error

indicates location of error

���� ���
data parity

sent:

1

received: ���� ���
data parity

Figure 85: 7.4 Hamming coding (FEC). To the four bits of data, d1..d4,
are added three parity bits, p1..p3, so that the parity is even in all circles.
When a message is received it can be checked on errors and single errors can
even be repaired; the error is the bit in the intersection of all circles with an
odd number of 1s. Here indicated a data bit d4 was transmitted wrongly.

01101110 1 0

is accepted; after all, the parity bit checks (six 1s in total).
To overcome this we can use something that is widely used in unidirec-

tional communications and is actually able to not only detect errors but
also correct them. It is called 7.4 Hamming and is a form of forward error
correction (FEC). It works as follows: Apart from four data bits, three re-
dundant parity bits (without information) are sent. To determine what the
three parity bits are we use a schematic shown in Figure 85. We draw three
circles and place the data bits d1..d4 in the four intersection zones. Then
we find the parity bits p1..p3 by making all circles have an even number of
1s. The example shows how to the data pattern 1000 the parity pattern 110
is added. Now if we receive a pattern we find the intersection of all circles
where the parity is wrong and this is the bit that must have flipped during
communication. An example, if we receive 1001110, we know the error must
have been the 4th data bit.

This scheme can correct single-bit transmission errors 100% successfully.
Multiple-bit errors can still go undetected and uncorrectable. While the
Hamming 7.4 and similar FEC techniques are widely used in communica-
tion, modern computers also start using it for internal communication, for
instance on the buses described above. The reason is that then the clock
frequency can be increased, because it permits a small tolerance on errors be-
cause a small bit-error rate (BER) will not be fatal. Shannon and Khinchin
have proven that theoretically an errorless channel of communication can
be established using adequate error-correction techniques and has a channel
capacity given before. I happily refer the reader to works on telecommuni-
cations.

9| Architecture of MIPS

We now come to a specific architecture, namely that of a MIPS computer.
In this chapter we will not bother ourselves with understanding how exactly
the described behavior is implemented in hardware. We just have to know at
this stage how the machine works logically. For that we have to analyze the
data flow diagram. Figure 86 shows this schematically. It all evolves around
the ALU (arithmetic/logic unit), which is doing the basic calculation. Or
better to say ’logic operations’, it merely being a sophisticated logic array.
In a nutshell, this is what happens at each step of a program:

• The program counter (PC) contains the address of the next instruction
to be executed. The program counter is a 32-bit register and can thus
address 232 different addresses. The main memory is organized in byte
units, and thus MIPS can address 4 GB of main memory.

• The 32-bit contents of the 4 consecutive bytes of memory pointed at
by the PC are fetched and placed in the instruction register (IR).

• The opcode (and possibly the function code) of the instruction in the
instruction register determine what is going to be performed. These
are the first 6 bits of the instruction and control the hardware (CL
standing for ’control logic’). It ’steers’ the ALU into doing the correct
logic operation. For instance, with opcode 000000 the logic operation
will be to mathematically add two operands.

• The rest of the instruction code then determines which operands will
be used in the logic operation. This is also controlled by the control
logic. For that we use the naming $rs for the source and $rt the
target register. For instance we can add the source register $t0 to the
target register $t1.

• One of the operands can also be ’immediate’, which means that the
source value is part of the instruction and should be copied from the
immediate-field of the instruction register.

179

180
C

H
A

P
T

E
R

9
.

A
R

C
H

IT
E

C
T

U
R

E
O

F
M

IP
S

registers

� � �
� � �

� � � � � � � � � � �

register

opcode

contr� � � � � � ¡ ¢ £ ¤

immediate/

¥

Program counter (PC)

main

memory
address

¢ £
read

� � d

¢ £

¦ §
¨ ©

function

ª «

¬

write

data bus

a
d
d
re

s
s
 b

u
s

d
a
ta

 b
u
s

bridge

bridge

bridge

bridge

®
¯ °

± ² ³ ´ µdata

address

bridge

immediate

¢ £

¶ · ¸ ¹ º nal buses:

control

» ¼ ½ ¾ ¿ nal bus:

¬

F
ig

u
re

8
6
:

B
asic

d
ata

fl
ow

d
iag

ram
o
f
th

e
M

IP
S

arch
itectu

re.

181

ÀÁ ÀÂ ÀÃ funcR:

I:

immJ:

type ÀÁ ÀÂ ÀÃ funcfR:

fI: type ÀÁ imm

ÄÅÆÄÆÅÇÄÇÅÈÆ ÇÉ 21 ÆÉ 11 É

imm

imm

É ÉÅ Å Å Å

opcode

opcode

opcode

opcode

opcode ÀÁ ÀÂ

Figure 87: Possible formats of the MIPS instructions. Three different
types, R, J and I. All instructions start with a 6-bit opcode, R (register)
instructions specify a source ($rs), a target ($rt) and a destination ($rd)
register. Some further specify a number (num), for instance the amount of
bits to shift, or specify a subfunction (func). I (immediate) instructions
have one of operands included in the instruction. J (jump) instructions can
specify a relative address in immediate form in the instruction or use an
address in a register ($rs). The fR and fI instructions are for floating point
operations, to be discussed later.

• The instruction also specifies where the resulting value, if any is gen-
erated, should be stored. This is the destination register $rd.

• An operation can also be a conditional or unconditional jump of the
program, making the program counter point at another instruction. If
the program counter was not changed by such a jump instruction, by
default the program counter is increased by 4 (see the ’4’ source value
at the ALU in the Figure).

• Mostly the operands are registers of the register file. These consist of
32 registers of 32 bits each and some additional functional registers
described in a moment.

• For some instructions the output is written in main memory instead
or the source operand is loaded from memory and stored in the desti-
nation register.

See Figure 87 for the possible formats of the instructions.
That is basically it. This is what we have to work with. With this

we have to do all our calculations. Writing programs in MIPS consists

182 CHAPTER 9. ARCHITECTURE OF MIPS

Table XXVIII: MIPS registers

0 $zero 8 $t0 16 $s0 24 $t8

1 $at 9 $t1 17 $s1 25 $t9

2 $v0 10 $t2 18 $s2 26 $k0

3 $v1 11 $t3 19 $s3 27 $k1

4 $a0 12 $t4 20 $s4 28 $gp

5 $a1 13 $t5 21 $s5 29 $sp

6 $a2 14 $t6 22 $s6 30 $fp

7 $a3 15 $t7 23 $s7 31 $ra

of shoving information around, adding or subtracting things, doing simple
logical operations on data, etc. It is like shunting (or switching) rolling
stock to form trains. Noteworthy, MIPS has a limited instruction set. It is
of the RISC architecture (reduced instruction set computer), meaning that
it has few instructions, but every instruction is fast. This in contrast to
CISC architectures (complex instruction set computers), which has many
powerful instructions, but each one relatively slow.

Simple as it may seem, when we start programming we soon realize the
thing is very powerful indeed. In the next chapter it will be explained how
with the simple 6-bit instruction set (26 = 64 different instructions) we
can implement advanced programs. We will see how we can implement the
concepts of higher-level programming languages such as C and FORTRAN
in MIPS instructions.

Before we do that, we need first to describe the register file here in the
end of this chapter. As said above, it consists of 32 registers of 32 bit.
While they can be labeled $0 until $31, mostly they are written in their
logical names, which indicate their function (see Table XXVIII):

• The first register is called $zero. The contents of this register are
hardwired to always contain 0, that is, 32 bits of 0. This might not
make sense at first sight, but don’t forget that MIPS is a RISC archi-
tecture, and the engineers had to save on instructions. As such, MIPS
does not have, for example, an instruction for copying the contents of
one register to another. The way it is implemented is by adding zero to
a register and storing the result of the ’calculation’ in the destination
register. In other words,

move $rd, $rs

is implemented with (for instance)

addu $rd, $zero, $rs

Fortunately, MIPS compilers understand move and we can freely use
this instruction. We have to realize that move is not implemented in

183

MIPS hardware, but translated by the compiler and is thus a so-called
pseudo instruction.

• Register 1 is called $at and is reserved for the compiler. It is used, for
instance, to load a 32 bit address in two steps into a register, storing
the intermediate value in $at, as we will see in the next chapter.

• Registers 2 and 3 ($v0 and $v1) are used by functions to return values
(similar to the C-instruction return(value)).

• Similarly, registers 4 through 7 ($a0 through $a3) are used to pass
information to functions as arguments, either directly as integer values
(passing by value) or as addresses to values in memory (passing by
reference).

• The next registers, 8 through 25 are ’freely usable’ registers, which
are divided into two groups, the so-called t-registers (8-15 and 24-25,
$t0-$t7 and $t8-$t9) and s-registers (16-23, $s0-$s7). The difference
between the two is: who is going to be responsible for temporarily
saving the values on the stack when functions are called, the calling
code — the ’caller’ — or the called code — the ’callee’. This will be
better explained in the section about functions in MIPS (Section 10.8
of Chapter 10).

• The last registers are for the kernel (26 and 27; $k0 and $k1), the global
pointer (28; $gp), stack pointer (29; $sp), frame pointer (30; $fp) and
return address (31; $ra). The stack pointer and return address are
used when implementing functions and will be discussed in Section
10.8 of Chapter 10. The kernel registers, global pointer and frame
pointer will not be discussed in this book.

• Apart from these general 32-bit registers there are two registers exclu-
sively used for arithmetic, namely HI and LO that are each 32 bit wide
and store the results of integer multiplications and divisions.

The question of MIPS being Little Endian or Big Endian we leave unan-
swered here. For us it is completely irrelevant. As long as it is done consis-
tently, it makes no difference whatsoever if the architecture is Big Endian
or Little Endian — in fact, a software engineer does not even have to worry
about it; it is the job of the hardware engineer — but a problem might arise
when we communicate between computers of different architectures.

10| MARS: MIPS Assem-

bly language implementation

It is now finally time to start coding! In this chapter we will do that. For
that we have to define some key issues. We have to understand what, in
essence, is happening in our architecture hardware when we run a program.

The hardware loads the contents of the 4 consecutive memory addresses,
pointed at by the program counter (pc), into the 32-bit instruction register
and executes it. Then it loads the next instruction that is at pc+4 if the
previous instruction did not cause a jump in the program.

Now about the instructions themselves. MIPS is an example of a RISC
(reduced instructions set computer) architecture. This means that the num-
ber of different instructions is rather limited. Each one is fast, but not
very powerful. MIPS has a total of only 64 different basic instructions (see
Appendix G). That means that specifying which one to use takes 6 bits
(26 = 64). As an example, addi is specified by 001000. This binary num-
ber that is in the beginning of the instruction we call the ’opcode’, whereas
the more human-readable addi is called the ’mnemonic’. Note, however,
that some instructions use additional bits to define a sub-function, thereby
leaving less space for the rest of the instruction. An example is the opcode
000000 that is used for a variety of mnemonics, as can be seen in Appendix
G.

Our MARS compiler translates our mnemonics into opcodes so that our
life is a little easier. Imagine, in the old days engineers did not have compilers
and they had to write the opcodes by hand instead of the mnemonics. You
should appreciate the work done by developers of compilers such as MARS.

The next part of the instruction is specifying the operands, of which
there can be either one, two or three. Imagine we want to add the contents
of register $t0 to $t1 and store it in $t2. These registers are then the
operands. The nomenclature is to call them the source, the target and the
destination operand, as in: adding the source to the target and store it at
the destination. The complete instruction consists of the choice of operation

185

186CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

(mnemonic) plus operands. Since we have 32 registers available, specifying a
register as operand takes 5 bits (25 = 32). As we will see, instead of the value
to be used being stored in a register, the operand value can also be part of
the instruction itself. These instructions are called ’immediate’. An operand
can also be a something that is in main memory, the address of which can
either be specified as immediate or be contained in a register. Note that
MIPS therefore does not have indirect addressing mode (the operand in an
address that is in an address pointed at by a register, see Figure 80).

That brings us to the memory organization. We have to observe that
both the instructions as well as the data reside in the same main memory.
In fact, technically speaking, code is fully indistinguishable from data; an
instruction is 32 bit, the bus is 32 bit and a register is 32 bit. An instruction
can be treated as data. As we will see, data can also be memory addresses
(pointers).

However, there is one small difference between data and code and that
makes that the organization of the memory follows a so-called Von Neumann
architecture. It means that program instructions and data are separated in
memory. Each residing in its own block of memory, the former named the
’code segment’ of memory (normally starting at address 0x00400000) and
the latter the ’data segment’ (normally starting at address 0x10010000).
The code cannot change the code, it can only change the data! That is,
technically it is possible, but it is a ’mortal sin’ in programmers ethics to do
so. Data is never code and code is never data. The code can only change
contents of the registers or of memory addresses in the data segment, never in
the code segment. Even if it is technically possible, an educated programmer
will never write a program that breaks this fundamental law in programming.

In MIPS, the two segments are identified by the assembler directives
.data and .text for data segment and code segment respectively. If we de-
clare something in the data segment by writing a name (label) for it followed
by a semicolon, for instance a word with the .word directive, as in
myword: .word 64

the compiler reserves space in the data segment, places the (optional) value
(64 in this case) in it and remembers the label name (myword), a pointer
— an address; not the value itself — to it in a table it keeps on the side
while assembling our program. The labels are forgotten when executing the
program.

Similarly, the use of a label in the code segment just stores the label
name and current position — the address in the code segment of the next
instruction — in the table that is kept on the side. For example,
mycode:

li $t0, 4

will keep the address of instruction li $v0, 4 in the label-look-up table.
Every time the assembler now encounters a reference to the label (a

pointer to data or code), it just uses (in most cases simply substitutes)

187

the value it has saved in this label-look-up table. After having completed
the assembling of our code and translated our instructions into machine
language, the names of the labels have been lost and the label-look-up-table
no longer exists.

Related, if we want to define a ’constant’, label a value, we can do this
with the .eqv assembler directive. As an example,
mydef .eqv 64

It just remembers the combination label and text ”64” in the table. Every
time the label mydef is encountered in the code, it is substituted by the text
”64” and then interpreted by the assembler. This text can be anything you
want, as long as it is legal MIPS code.

In this case, after our three declarations the label-look-up table now looks
like this, two pointers to memory (one to data and one to code) and one text
value:

Label Value

myword 0x10010000

mycode 0x00400000

mydef ASCII ”64”

Note that the declarations above are fully equivalent, they all just create
label-value pairs in the table, but the first one resembles the declaration
of a variable in the C language, while the latter resembles the #define C-
compiler directive defining constants. (The middle one having no C equiv-
alent). For MIPS it makes no difference. If we wish, we can jump to our
constant, j mydef, which the compiler might even accept if the value co-
incidentally is within the code segment range. (YWIYGI, ”you wanted it,
you got it!”). Very likely though, the compiler will warn us: ”Jump target
word address beyond 26-bit range”, or so. (Actually, the compiler used by
the author, MARS, does refuse to compile this turd of programming).

In the next sections we will see how MIPS can implement basic concepts
of higher ’imperative’ programming languages such as C. We will see

• Input/output

• Arithmetic

• Jump and branch (goto and if-then)

• Loops (for, while, do-while)

• Arrays and structures

• Floating point arithmetic

• Functions

188CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

Table XXIX: Some compiler directives

Anywhere

ignore rest of line (comment)
example: # this text will be ignored

.eqv label text store (label,text) in compiler table
example: .eqv four 4

Data segment

label: .word value(s) reserve 4 bytes in data segment
for every value given,
place value(s) in data segment,
store (label,address) in compiler table

example: numbers: .word 1, 2, 3

example: numbers: .word 0:129 # reserve 130*4 bytes space

label: .ascii "string" store ASCII string in
data segment and remember
(label,address) in compiler table

example: name: .ascii "Peter"

label: .asciiz "string" same as above
but add NULL (0x00) to end of string

label: .space n reserve n bytes in memory
in compiler table

example: myarray: .space 200

Code segment

label: store (label,next code address)
in compiler table

example: main:

10.1 Input/output (system calls) and memory
access

A computer without output is as silly as the concept of WOM (write-only
memory). A computer without input is strange, but possible (think of cal-
culating the first 1000 digits of π), but without output is silly. Therefore, we
first have to learn to generate output. As a tradition in programming, the
first program we write in a new language will print ”Hello world!” For that
we need to have access to input and output functions that in the MARS sim-
ulator of MIPS are part of the environment; no need to write them ourselves.
These resemble the software interrupts (exceptions) that were described in
Chapter 8 and in MIPS are called system calls which are summarized in
Appendix I. The method consists of choosing the system call we want by

10.1. INPUT/OUTPUT (SYSTEM CALLS) AND MEMORY ACCESS189

placing the correct number of the system call in register $v0, place any ar-
guments in the a-registers, and then issue a syscall. As Appendix I shows,
printing a string is MARS system call number 4 and we have to place the
address of the null-terminated string in register $a0. That’s all there is to
it. The program below, hellow.asm, shows how this works. First we define
a null-terminated string by the definition .asciiz in the data segment, then
we prepare the registers and issue a syscall. Note that to cleanly end the
program, we issue a ’syscall 10’, which will print the message

”-- program is finished running --”
and stops execution. Figure 88 shows how this looks in the MARS environ-
ment.

##

MIPS Assembly program that prints "Hello world!"

##

#data segment with ’variables’; starts at 0x10010000

.data

hellow: .asciiz "Hello world!"

#code segment with instructions; # starts at 0x00400000

.text

start:

li $v0, 4

la $a0, hellow

syscall # 4: print string

#terminate program:

stop:

li $v0, 10

syscall

Output:

Hello world!

-- program is finished running --

Analyzing the program we see that assembly does not have any variables.
The only thing assembly has is values and addresses (pointers). When we
’declare’ a variable such as hellow, what, in fact, is done is

• Space is reserved in main memory (on the heap, the data segment)
enough to store the data

• The assembler remembers a pointer to this space and saves this in a
table, together with the name of the label we have given to it

190CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

• Every time we use the label in further reference, the label is looked
up in the table and the compiler substitutes it with the corresponding
value

In this case the label-look-up table looks like this (see panel Labels in Figure
88. Note that any .eqv definitions are now shown in this look-up table):

Label Value

start 0x00400000

stop 0x00400010

hellow 0x10010000

The first two labels are pointers to instructions in the code segment. The
last is a pointer to the string in the data segment. Let us here analyze basic
instructions of MIPS. Starting with the simplest of all, move.

Moving around — shunting — data in the registers is done by the move
instruction (move), which might be confusing, since it does not actually move

anything, but rather copies things. (The source register retains the original
value as well):

• move $t0, $t1: copy the contents of $t1 to $t0

(= addu $t0, $t1, $zero)

The move instruction is a pseudo instruction in that it is not part of the MIPS
instruction set, but MARS implements it with other MIPS instructions, for
example adding the source register to the $zero register and putting the
result in the destination register.

If we want to directly load a number into a register, we can use ’load
immediate’, li. In that case, the value to store in the register is part of the
instruction, this value we call immediate.

• li, $t0, immediate

store the 32 bit value immediate in register $t0

This needs some explanation. Since specifying one of the 64 opcodes of
MIPS takes 6 bits, and specifying one of the 32 registers as destination
takes 5 bits, storing directly a value of 32 bits into a register would take
6 + 5 + 32 = 43 bits. That obviously does not fit into the 32 bits of the
instruction register. The solution is that the compiler translates the li

instruction into two separate instructions: first loading the upper part of
value into the temporary register $at by ’load upper immediate’ (lui) and
then bitwise OR’ing the lower part of the value to it by ’or immediate’
(ori), storing the final result in the destination register ($t0 in this case):
li $t0, 0x12345678

thus translates into the two instructions

10.1. INPUT/OUTPUT (SYSTEM CALLS) AND MEMORY ACCESS191

Figure 88: Example of the compiled and ran program hellow.asm.

lui $at, 0x00001234

ori $t0, $at, 0x00005678

Note that if the value to load is less or equal than 0x0000FFFF the lui

0x00000000 is redundant and a li 0x0000abcd, for example, translates
into a single instruction,
ori $t0, $zero, 0x0000abcd

or ’add immediate unsigned’, which is effectively the same,
addiu $t0, $zero, 0x0000abcd

The instruction li is therefore also a pseudo instruction. In this case the
MARS compiler translates it into one or two MIPS instructions. For reasons
of legibility of the program in other cases, the exact same pseudo instruction
is also called ’load address’,

• la, $t0, value

192CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

exactly the same as ’load immediate’ (li), but pronounced as ’load
address’ and the value is now an address.

The instructions also have access to the code segment in main memory.
While many things can be done at the registers — and working with registers
is much faster than working with main memory — sometimes we will want to
store our data. Moreover, we have only 32 registers available, which is rather
few. With addresses of 32 bits, each capable of storing 8 bits of information,
we can store 232 = 4 GB of data. So, we will load things from memory,
calculate things as much as is possible in the fast registers and then store
the end result back in memory. We thus need instructions for loading and
storing information. The basic instructions are lw and sw, ’load word’ and
’store word’, respectively, and they have two addressing modes, immediate
and direct.

• lw, $t0, addressvalue

load the 32-bit contents of the 4 consecutive addresses pointed to by
addressvalue into register $t0

• lw, $t0, offset($t1)

load the 32-bit contents of the 4 consecutive addresses pointed to by
the pointer in $t1 plus offset into register $t0

• sw, $t0, addressvalue

store the contents of register $t0 into the 4 consecutive addresses
pointed to by addressvalue

• sw, $t0, offset($t1)

store the contents of register $t0 into the 4 consecutive addresses
pointed to by the pointer in $t1 plus offset

Also smaller sized load and store instructions exist: sh, lh, for storing and
loading halfwords (16 bits) and sb, lb, for storing and loading bytes (8 bits).

❉

Now let’s take a look again at our compiled program hellow.asm, see
Figure 88. We see that the compiler has translated our
li $v0, 4

into
addiu $2, $0, 0x00000004

which accomplishes the desired effect, adding 4 to the 0 of register $zero

and placing it in register $2, which is $v0, as can be seen in the right side
of the image. Indeed, the program shows that, at finishing the program, the
contents of $v0 are 0x0000000a which were placed there by a another li to
invoke a system call syscall 10 to end the program.

10.1. INPUT/OUTPUT (SYSTEM CALLS) AND MEMORY ACCESS193

Now, let’s look at this specific instruction li $v0, 4 that was translated
into addiu $2, $0, 0x00000004. (See the Figure ; the column named ’Ba-
sic’). If we look in the appendix with MIPS instructions (Appendix G), we
see that addiu has an opcode equal to 001001, after which follow five bits
for the source register, five bits for the target register and 16 bits for the
immediate value: the source register is $zero, or $0 which is in 5 bits equal
to 00000 and the target register is $v0 ($2), which is 00010, the immediate
value is 4, which is 0000000000000100, so the final instruction is:

mnemonic source target immediate
addiu $zero $v0 4

001001 00000 00010 0000000000000100

Regrouping in units of 4 bits and converting to hexadecimal:
0010 0100 0000 0010 0000 0000 0000 0100

0x 2 4 0 2 0 0 0 4

which is the compiled code, as can be seen in the Figure (in the column
named ’Code’). It is placed in the four addresses starting from 0x00400000

(see the column named ’Address’). When the program is run, the program
counter is set to this value and the hardware fetches this addiu instruction,
places it in the instruction register and executes it. That is, it latches the
values of the register $0 and the immediate value into the ALU, adds the
two operands and latches the result into register $v0. It then adds 4 to the
program counter.

The next two compiled code instructions (la that is translated into lui

plus ori) load the address (0x10010000) of the text ”Hello world!” of the
data segment into register $a0 (=$1). As can be seen in the Data Segment
panel, the text is stored as (hexadecimal)
6c 6c 65 48 6f 77 20 6f 21 64 6c 72 00

l l e H o w o ! d l r [eos]

([eos] = string terminator, 00), which gives us an indication of how data is
represented and stored by the MARS/MIPS environment and architecture.

At the end of the program we can verify in the Registers panel that:

• The program counter is pc = 0x00400018, which is the address of the
last syscall plus 4

• The value of $zero is still 0, since it is hard wired

• The value of $v0 is 10, set there for the last syscall (terminate execu-
tion)

• The value of $a0 is 0x10010000, still pointing to the string ”Hello
world!”

As can be seen, what at first seems rather complicated, turns out to be very
simple.

194CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

In this example we used console output, printing a string to the screen
by syscall 4. We can also output (and input) to (from) file. For that we
use I/O system calls (see Appendix I) syscall 13 (open file), syscall 14

(read from file), syscall 15 (write to file) and syscall 16 (close file). An
example of writing Hello world! to a file named hello.txt:

##

MIPS Assembly program that writes "Hello world!"

to a file ’hello.txt’

##

.data

filename: .asciiz "hello.txt"

outbuffer: .asciiz "Hello world!\n"

.text

la $a0, filename # string with filename

li $a1, 1 # mode: 1 = overwrite

li $a2, 0 # mode2: 0 (always)

li $v0, 13 # syscall 13 = open file

syscall

move $a0, $v0 # file descriptor

la $a1, outbuffer # address of string to write

li $a2, 13 # number of chars to write

li $v0, 15 # syscall 15 = write to file

syscall

li $v0, 16 # syscall 16 = close file

syscall

li $v0, 10 # syscall 10 = terminate program

syscall

10.2 Arithmetic

Basic arithmetic in MIPS consists of simple mathematical operations of ad-
dition (add), subtraction (sub), multiplication (mult) and division (div).
Multiplying two 32-bit numbers can, in principle, result in a 64-bit integer.
Such a result does not fit in a 32-bit destination register. To avoid this
problem, MIPS engineers added two registers to the 32 standard 32-bit reg-
isters described before, namely HI and LO. These will contain the first 32
and last 32 bits of the multiplication, respectively. A similar problem occurs
in divisions: the integer division result is stored in LO, while the remainder
of the division is stored in HI. These can be moved to normal registers by
instructions move-from-low (mflo) and move-from-high (mfhi).

10.2. ARITHMETIC 195

Additionally, the ALU can perform some basic logic operations or, nor,
and, xor). These mathematical and logic operation all take three operands:
two input operands, of which one can be immediate (contained in the in-
struction) and one output register. (Question: why would it not make sense
to have both input operands of the immediate type? Or to have an immedi-
ate output operand?) All these operations are straightforward and will not
be explained here further, with the only comments that subtractions do not
have an ’immediate’ version (again: why not?) and that all mathematical
operations can be done with either signed or unsigned numbers.

Apart from this, the ALU can shift the bits of a register left or right a
number of places determined either by the immediate value or by the con-
tents of a specified register, and can store the result in another register. They
exist in two variants. The difference between the variants, that are called
’logic’ and ’arithmetic’, is that the former merely shifts the bits a certain
amount of places, filling the created gaps with 0s, while in the arithmetic
variants the high-order bits are sign extended, thus a right shift fills the
utmost left bits with a copy of the utmost left bit before shifting; if, before
shifting, the MSB was 1, they are filled with 1s, otherwise they are filled
with 0s. This way, arithmetic shifting right is like divisions by 2, also for
negative numbers. Note that left logic shifts and left arithmetic shifts are
the same and therefore, only a logic version (mnemonic) exists.

An example of the effects of the three versions a 1-bit shift operation on
a positive and a negative operand is given here in the table below:

mnemonic operand decimal result decimal
srl 1 0x00000004 4 0x00000002 2

0000...0100 0000...0010

sra 1 0x00000004 4 0x00000002 2

0000...0100 0000...0010

sll 1 0x00000004 4 0x00000008 8

0000...0100 0000...1000

srl 1 0xfffffffc -4 0x7ffffffe 2147483646

1111...1100 0111...1110

sra 1 0xfffffffc -4 0xfffffffe -2

1111...1100 1111...1110

sll 1 0xfffffffc -4 0xfffffff8 -8

1111...1100 1111...1000

Shift instructions, where the number of bits to shift is not an immediate
value contained in the instruction, but given in a register instead, are speci-
fied by adding a ’v’ to the mnemonic, which indicates ’value’. All variants of
shifting instructions have opcode 000000, but are differentiated through the
specification of the function code, which for these instructions is the last 6
bits of the instruction. In the list here below, ’s’ means shift, ’r’ means right,

196CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

’l’ means left or logic, ’a’ means arithmetic, ’v’ means value (contained in a
register).

mnemonic opcode function direction, type, value is
sll 000000 000000 left, (logic & arith.), immediate
srl 000000 000010 right, logic, immediate
sra 000000 000011 right, arithmetic, immediate
sllv 000000 000100 left, (logic & arith.), in register
srlv 000000 000110 right, logic, in register
srav 000000 000111 right, arithmetic, in register

Sometimes we want to have the bits that leave the register on one side
reappear on the other side, as in a rotation. Such rotate instructions are not
part of MIPS, but our MARS compiler can translate the pseudo-code easily

mnemonic opcode function description
rol $rd, $rt, n - - rotate $rt left n bits
ror $rd, $rt, n - - rotate $rt right n nits

As an example, rol $t1, $t0, 4 is implemented by
srl $at, $t0, 28

sll $t1, $t0, 4

or $t1, $t1, $at

which indeed does the job.

Exercises:

1. Write a MIPS program that asks two numbers and
prints their sum, difference, product and quotient.

2. Write a MIPS program that asks a number and calcu-
lates the number multiplied by 10.5, with this multipli-
cation not done by a mult instruction, but by shifting
and summing.

10.3 Jump and branch; (goto, if . . . then goto)

The next instructions we will look at are simple unconditional jumps and
conditional jumps (see Figure 89). Most modern fourth-generation program-
ming levels do not use this concept, with maybe the only exception being
BASIC. The reason is that a program rapidly turns out to be spaghetti, and
where the idea in programming is to write programs in as-close-as-possible-
to English, writing in Italian is highly discouraged. The BASIC equiva-
lent of a jump instruction is GOTO label, and the conditional jumps are IF

condition THEN GOTO label. In the latter, the program can continue at
two different paths, and therefore this technique is called ’branching’.

10.3. JUMP AND BRANCH; (GOTO, IF . . . THEN GOTO) 197

• j label

This simply puts the value of the address label into the program
counter: label → pc

Note that the jump addresses are part of the instruction and these instruc-
tions are thus of the ’immediate’ type described before. Since 6 bits are used
for specifying the operation (the ’opcode’), only 26 bits remain for specifying
the address (of 32 bits) and there thus exists a problem.

MIPS developers were very smart. Realizing that instructions are always
4 bytes apart, the last two bits of the address are redundant (always 00; in
some cases we have to ’align’ the code with nop — no-operation — instruc-
tions) and are thus implicit in the address specified. Still, that makes 28 bits
of address, and only 228 = 256 MB addressable of the total 4 GB of memory.
All addresses in immediate jumps are thus relative to the program counter
(pc) when jumping. To be more precise, the address jumped to is on the
’page’ specified by the first 4 bits of the actual program counter (page = pc

AND 0xF0000000); the final address is this page plus the 26 immediate bits
(unsigned integer) of the instruction multiplied by 4 (left-shifted two bits).

page + 4*immediate→ pc

or (binary)

ppppiiiiiiiiiiiiiiiiiiiiiiiiii00→ pc

with pppp the first 4 bits of the program counter and ii...i the 26-bit
immediate value. As an example, if we have a jump instruction at address
0x00400038

j 0x0040002c

the address to jump to is 0x0040002c = 0000 0000 0100 0000 0000 0000

0010 1100, the page (of both the jump instruction and the one to jump
to) is the first 4 bits: pc-page = 0000. The rest of the destination ad-
dress is divided by four and serves as the immediate value of the operation:
immediate = 00 0001 0000 0000 0000 0000 1011. The jump opcode =

0000 10. The total instruction at address 0x00400038 is thus

opcode | immediate

0000 10|00 0001 0000 0000 0000 0000 1011

0x 0 8 1 0 0 0 0 c

198CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

ÊËÌÍÎÏÐ
(unconditional)

condition

false
true

branching

(conditional)

Figure 89: Difference between (unconditional) jumping and (conditional)
branching.

This way, the first bits of the program counter represent something like a
page we are working on, of which in MIPS there exist 24 = 16, and for that
reason we call this technique ’paging’. (Long) jumping to a different page
has to be done in a different way. For example placing a full 32-bit address
in a 32-bit register and issuing a jump-to-register (jr).

The advantage of paging (or addresses relative to the program counter)
is that a program can be relocated in memory without having to change
the code. The most convenient therefore would be jumps relative to the
program counter, in which case the program can be placed anywhere in
memory, without restrictions and recalculating instructions.

❉

Conditional jumping is called ’branching’, for which we have a set of
instructions that are generally described by:

• branch-condition address

This puts the value of the address into the program counter when
the condition, comparing two values, is true, otherwise it defaults to
adding 4 to the program counter, like for normal instructions:
condition is true: label → pc

condition is false: pc+4 → pc

It is thus equivalent to the BASIC instruction
IF condition=TRUE THEN GOTO label

The six branch instructions that are implemented in hardware are:
beq $rt, $rs, addr: Branch to addr if operands are equal
bne $rt, $rs, addr: Branch to addr if operands are not equal
bltz $rt, addr: Branch to addr if operand < 0
bgtz $rt, addr: Branch to addr if operand > 0
blez $rt, addr: Branch to addr if operand 6 0
bgez $rt, addr: Branch to addr if operand > 0

10.3. JUMP AND BRANCH; (GOTO, IF . . . THEN GOTO) 199

All other branching variants are pseudo instructions that might (or might
not) be implemented by the assembler, or can be implemented by us in
macros (see Appendix G):
blt $rt, $rs, addr: Branch to addr if $rt < $rs

bgt $rt, $rs, addr: Branch to addr if $rt > $rs

ble $rt, $rs, addr: Branch to addr if $rt 6 $rs

bge $rt, $rs, addr: Branch to addr if $rt > $rs

beqz $rt, addr: Branch to addr if $rt = 0
bnez $rt, addr: Branch to addr if $rt 6= 0

As an example,
beqz $t0: Branch if $t0 = 0

is implemented as
beq $t0, $zero

which obviously does the trick. And
bgt $t0, $t1: Branch if $t0 > $t1

is implemented in two instructions as
slt $at, $t1, $t0

bne $at, $zero

Here the instruction slt (set if less than) is writing evaluation of the condi-
tion — ’less-than’ — in a specified register

• slt $rd, $rt, $rs: Set $rd (to 1) if $rt is less than $rs (reset to 0
otherwise).

An instruction that has no ’greater than’ or ’equal to’ variants (I leave it to
the reader to think why not), but has an ’immediate’ version ($rd replaced
by an immediate value) apart from the direct addressing mode above, and
has versions for both signed and unsigned numbers: slt, slti, sltu, and
sltiu.

The jump-to addresses for these conditional jump instructions work dif-
ferently compared to the addresses of unconditional jumps (j) described
earlier, yet also uses the same memory efficiency 2-bit-shifting technique.
Conditional jump addresses are relative to the actual current value of the
program counter, which, immediately after fetching the instruction from
memory, is already updated to the next instruction at pc+4. So, if the con-
dition is true, the program continues at address (pc+4) + immediate×4,
with pc the address of the branching instruction. For simple jumps de-
scribed earlier, the immediate value is 26 bit and addresses span 226+2 =
256 MB, as shown above. For conditional jumps, the specification of the
registers to compare take up an additional 10 bits (5 bits for each regis-
ter) and the immediate address specification is thus limited to only 16 bit,
making the jump addresses in these instructions span only 216+2 = 256 kB;
conditional jumps are relatively local. If we need longer jumps, we need to
make a conditional jump to an instruction with an unconditional jump. If
we need even longer jumps, we need to place the full 32-bit address in a

200CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

register and issue a direct-addressing-mode jump-register instruction (jr),
which simply copies the 32-bit contents of the register to the 32-bit program
counter.

Some final remarks about conditional branching. First of all, note that
there does not exist in assembly an ’else’ clause, nor does the concept of
multiple choice (like ’switch’ in C, or ’case ... of’ in Pascal) exist. All
conditional branching in Assembly is either jumping to that address, or
continuing with the next instruction at pc+4.

Finally, note here the important difference between high level languages
such as C:
if (t0==t1)

instructions-when-true

and assembly:
beq $t0, $t1, label

instructions-when-false

They are in opposite order, jump-over-when-false vs. jump-over-when-true.
Here is a worked-out example of branching. It inputs two numbers and

prints ”same” if they are equal, and ”different” otherwise.

Source code:
###

MIPS Assembly program that shows how

to implement branching

###

.data

number: .asciiz "Give a number: "

difftxt: .asciiz "Numbers are different\n"

sametxt: .asciiz "Numbers are the same\n"

.text

la $a0, number

li $v0, 4

syscall # print "Give a number"

li $v0, 5

syscall # read int into $v0

move $t0, $v0

li $v0, 4

syscall # print "Give a number"

li $v0, 5

syscall # read int into $v0

move $t1, $v0

li $v0, 4

beq $t1, $t0, same # if ($t1==$t0)

different: # false

la $a0, difftxt

syscall

j terminateprog

10.4. LOOPS; (FOR, WHILE, DO-WHILE) 201

same: # true

la $a0, sametxt

syscall

terminateprog:

li $v0, 10

syscall # terminate program

Output:

Give a number: 5

Give a number: 6

Numbers are different

-- program is finished running --

10.4 Loops; (for, while, do-while)

In high-level programming we normally have the concept of loops to our
disposition, and mostly they can be divided into

• for: used for loops that have a number of iterations well known at the
beginning of the loop and they are countable (thus integers are used).

• while-do: used for loops that have an a-priori undetermined number
of iterations (as in: while input chars available do), and used for loops
that use floating point numbers. The condition is checked in the begin-

ning of the loop, so it might occur that not a single iteration is done
and none of the instructions within the loop is ever executed.

• do-while: the same as while-do, but the condition is checked at the end

of the loop, so the instructions within the loop are executed at least
once.

The concept of loops is not available in Assembly, but it is not very diffi-
cult to implement with the branching instructions learned above. The code
below gives an example of how to implement a for loop, printing n times a
certain text.

Source code:

###

MIPS Assembly program that shows how

to implement a for loop

n times printing a text

###

.data

202CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

prompt: .asciiz "Give a number (n): "

hellow: .asciiz "Hello world!\n"

.text

la $a0, prompt

li $v0, 4

syscall # print prompt

li $v0, 5

syscall # read int n into $v0

move $t0, $v0

we will implement the following C code:

for (i=0; i<n; i++)

printf("%s", "Hello world!");

i is stored in $t1

n is stored in $t0

la $a0, hellow

li $v0, 4

move $t1, $zero # initial value of i=0

startloop:

beq $t1, $t0, exitloop # exit if end value is reached

syscall # printf

addi $t1, $t1, 1 # i++

j startloop # go back to start of loop

exitloop:

li $v0, 10

syscall # terminate program

Compiled program:

Address Code Basic Line: source code

--

0x00400000 0x3c011001 lui $1,0x00001001 12: la $a0, prompt

0x00400004 0x34240000 ori $4,$1,0x00000000

0x00400008 0x24020004 addiu $2,$0,0x00000004 13: li $v0, 4

0x0040000c 0x0000000c syscall 14: syscall

0x00400010 0x24020005 addiu $2,$0,0x00000005 15: li $v0, 5

0x00400014 0x0000000c syscall 16: syscall

0x00400018 0x00024021 addu $8,$0,$2 17: move $t0, $v0

0x0040001c 0x3c011001 lui $1,0x00001001 23: la $a0, hellow

0x00400020 0x34240010 ori $4,$1,0x00000010

0x00400024 0x24020004 addiu $2,$0,0x00000004 24: li $v0, 4

0x00400028 0x00004821 addu $9,$0,$0 25: move $t1, $zero

0x0040002c 0x11290003 beq $9,$8,0x00000003 27: beq $t1, $t0, exitloop

0x00400030 0x0000000c syscall 28: syscall

0x00400034 0x21290001 addi $9,$9,0x00000001 29: addi $t1, $t1, 1

0x00400038 0x0810000b j 0x0040002c 30: j startloop

0x0040003c 0x2402000a addiu $2,$0,0x0000000a 32: li $v0, 10

0x00400040 0x0000000c syscall 33: syscall

--

Output:

10.5. MASKING 203

Give a number: 5

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

-- program is finished running --

The compiled code is also shown here to highlight the relative branching
address method described in the previous section. Especially to note here is
the beq instruction at address 0x0040002c on line 27: the immediate value
in the instruction is only 3. Therefore the program (if $t0 equals $t1) jumps
to (0x0040002c+4) + 4×3 = 0x0040003c, just beyond the for loop.

Exercise:

Write a MIPS program that calculates the first 100 prime
numbers.

10.5 Masking

A special application of the bitwise and, or and xor instructions is masking.
Imagine if we have a bit pattern of 8 flags, for instance the printer status,
and we want to see if one status bit is set, for instance if the printer is out of
paper. How do we do that? Very simple. We use a bitwise and instruction
with the flags status register as first operand and for the second operand a
value consisting of all zeros, except at the place corresponding with the status
bit of interest, which is 1 instead. This ’isolates’ the bit we are interested in
and we can now either directly check if the resulting entire value is zero or
not, or we can right-shift the bit under scrutiny to the least-significant bit
(LSB) position and compare the result with 1. If this int value is 1, the flag
bit was set, if the resulting int is equal to 0 the flag bit was not set. As an
example, imagine we have a status register equal to 00010110 and we want
to know if bit b2 (3rd bit from the right) is set we use

Reading a bit:

00010110

00000100 and

00000100 srl 2

00000001

This result is equal to one and thus the bit was set. (Alternatively, we could
have stopped after the and instruction and decided that because this value
is not zero, the bit must have been set). The mask, the second bit pattern
above, as it were, lets through only the relevant bit and ’masks’ the other
bits.

204CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

Setting a bit to 0 or 1 can also easily be done, as well as inverting a bit:

Setting bits (OR-1):

00000001 sll 7

10000000

00010110 or

10010110

Erasing bits (AND-0):

11111110 rol 1

11111101

00010110 and

00010100

Toggling bits (XOR-1):

00000001 sll 2
00000100

00010110 xor

00010010

It is obvious that various bits can be addressed like this simultaneously.

❉

On basis of this we can write a program that multiplies two numbers
without using the mult instruction. Remember that multiplications consist
of shift and add, in the so-called Russian-peasant algorithm. An example
is shown here multiplying two positive numbers (max 65535, to not have
overflow). It saves the result in $lo:

###

MIPS Assembly program to do integer multiplications

without using the MUL instruction

Russian-peasant algorithm

###

.text

directly inserting operands here

li $t0, 10

li $t1, 20

move $t2, $zero # initialize result

loop:

beqz $t1 ready # if $t1 is 000..000 nothing more to do

andi $t3, $t1, 1 # mask to only have LSB of $t1

beqz $t3, skip # if LSB=0 no adding needed

add $t2, $t2, $t0 # add $t0 to result

skip:

sra $t1, $t1, 1 # divide $t1 by 2

sll $t0, $t0, 1 # multiply $t0 by 2

j loop

ready:

10.5. MASKING 205

mtlo $t2

end program:

li $v0, 10

syscall

Another example, of how to do divisions, is shown here below. In this
case, the operand a in the division a/b is stored in $t1 and shifted into $t5

by masking ($t3). Every time the result in $t5 is bigger than the b operand
($t2), an operation is performed, subtracting $t2 from $t5, and a 1 is shifted
into the result register $t6, otherwise a 0 is shifted into it. The mask bit –
starting on the leftmost position (could be 2nd position. Why?) – is then
shifted to the right. When the mask bit is shifted out of $t3, the division
is ready. The result is in $t6, with the remainder in $t5. For compatibility,
these are then copied to the $lo and $hi register, respectively. To make the
algorithm work with negative numbers, first the sign information is saved
(in $t9), and then the positive values of the operands are used. For inserting
1s into registers, ori 1 is used rather than andi 1, because OR-immediate
is a faster operation in many architectures:

##

MIPS Assembly program to do integer divisions

without using the DIV instruction

##

.text

directly inserting operands here

li $t1, 1000 # operand a

li $t2, -3 # operand b

convert everything to positive and remember in $t9 the

final sign in upcoming result (and in $t8 sign of a):

li $t9, 0 # 0=positive result, 1=negative result

bgtz $t2, posb

sub $t2, $zero, $t2 # t2 = -b

li $t9, 1

posb:

li $t8, 0

bgtz $t1, posa

sub $t1, $zero, $t1 # t1 = -a

li $t8, 1

sub $t9, $t8, $t9 #t9=1-t9, if (t9==1) t9=0; else t9=1;

posa:

initialize registers:

li $t3, 0x80000000 # mask

li $t6, 0 # result

li $t5, 0 # shift-in register of $t1 operand

top:

206CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

beqz $t3, done # if mask is shifted empty, terminate

sll $t5, $t5, 1 # shift left $t5 1 place; make place for new bit

sll $t6, $t6, 1 # also in the result

and $t4, $t1, $t3 # is isolated masked bit set in operand a?

beqz $t4, insertzero # if not ’insert’ 0

insertone: # else insert 1 in shift-in register

ori $t5, $t5, 1

insertzero: # nothing to do here

now $t5 has new bit of $t1 (a) shifted in on the right

compare it to $t2 operand b

bltu $t5, $t2, nosubtraction # if big enough, subtract and insert

1 in answer $t6

subtraction:

subu $t5, $t5, $t2

ori $t6, $t6, 1

nosubtraction: # else ’insert’ 0 in answer $t6

srl $t3, $t3, 1 # move mask bit 1 place to right

j top

done:

beqz $t9 saveandterminate # results should be negative?

sub $t6, $zero, $t6

sub $t5, $zero, $t5

saveandterminate:

mtlo $t6

mthi $t5

li $v0, 10

syscall

An engineer must admit it is beautiful. Doing divisions without a division
operation. Just like we can do multiplications without a multiplication algo-
rithm. All based on additions and subtractions. And subtractions were just
additions with the two’s-complement of the second operand (Fig. 48). And
additions themselves could be carried out by a ripple-carry adder consisting
of a dozen transistors per bit. In the extreme case, a single 1-bit full-adder
could do the job. And the full-adder was based on simple Booloean logic we
designed with Karnaugh maps, etc. We have already come a long way since
we introduced Boolean logic, but we can still go much further.

10.6 Arrays and structures

A very useful concept in a high-level programming language is the joining
of data in arrays or structures. We can imagine a mathematical vector, or
matrix of elements, all of the same type, or a collection of data, a ’file’ of
a person in a database. From programming lectures we know that data
of identical type are stored in arrays, where each element has an index, or
indexes, and data of mixed type are stored in structures.

10.6. ARRAYS AND STRUCTURES 207

memory:

array

pointer

ÑÒÓ(iÓÔÑÕÖ

a×× a×Ø a×Ù

aØ×

a22

a11 a12

aÙ× a21
()

mathematics:

aÚÛ

Ü
ÝÞ
ß
à
á
âß
ãß
ä
ß
å
æç

rè
é
ê
ëì
í

(n
u
m

b
e
r

o
f

c
o
lu

m
n
s
)

address:

î ïðñòó ôõö÷ ñøù÷ î
elements, each element aúû

of type üðõù ýþ ÿoùôò�

a××

a×Ø

a×Ù

aØ×

a11

a12

j
i

ø i ïow number� i öð���� ���ÿôï

Figure 90: An array in programming is a mapping of a multi-dimensional
object, such as a mathematical matrix shown here, to a linear memory ’vec-
tor’. We have to calculate the position of the element in memory based
on its indexes. The address of element aij can be found as: address =

arraypointer + elementsize×(i×elements_per_row + j).

In assembly the concept of arrays and structures does not exist. Our pro-
gram thus has to calculate where all the elements of data reside in memory.
We have to map the structure of our data onto a one-dimensional array of our
linear memory (see Figure 90). This is a simple calculation if we know the
size of each element of our data. As an example, if we have a vector of words
(4 bytes each), then the address of element i, assuming the first element is
element 0, can be found as vectoraddress+i×4. A two-dimensional array
can be implemented as well, but the calculations are slightly more compli-
cated. The element aij , with i the row number and j the column number
can be found by the row number i multiplied by the row size (number of
columns, dimj) and adding the column number j, multiplying this sum by
the element size and adding the result to the base address, see Figure 90.
The address of aij is thus the following C-expression:

&a[i,j] = base + (i*dimj+j)*sizeof(element)

The example below checks which point in space, with coordinates (x,y,z),
has the smallest sum of coordinates x + y + z. We assume that the data
are placed in memory as x0, y0, z0, x1, y1, z1, x2 . . . , starting from address
array. This means that to find the coordinate x of point i in space, we
calculate array+3×4×i. The ’4’ comes from the size of an element (1 word
is 4 bytes), the ’3’ from the size of a line in the matrix (1 point has 3
coordinates). For coordinate y and z we add 4 and 8 to this, respectively.

Source code:

208CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

###

MIPS Assembly program that shows how to implement an array

###

.data

mintext: .asciiz "minimum sum: "

indextext: .asciiz " at index: "

an array of 10 coordinates (x,y,z)

array: .word

1, 10, 18, # 0

2, 2, 20, # 1

13, 13, 1, # 2

20, 20, 100, # 3

8, 9, 10, # 4

11, 12, 1, # 5

20, 1, 2, # 6

18, 8, 8, # 7

9, 9, 3, # 8

10, 9, 5 # 9

.text

t8 stores minsum

li $t8, 999999

li $t0, 0

li $t1, 10

startloop:

beq $t0, $t1, exitloop

la $a0, array

mul $t3, $t0, 12

add $a0, $a0, $t3 # a0 = array + 3*4*i

lw $t4, 0($a0) # x_i

lw $t5, 4($a0) # y_i

add $t4, $t4, $t5

lw $t5, 8($a0) # z_i

add $t4, $t4, $t5 # t4 = x_i + y_i + z_i

bgt $t4, $t8, continue #jump if sum is larger than old minimum sum

#if not, then new minimum sum found

move $t8, $t4 # save new minimum

move $t7, $t0 # save index

continue:

addi $t0, $t0, 1 # increment i

j startloop

exitloop:

li $v0, 4

la $a0, mintext

syscall

li $v0, 1

move $a0, $t8

10.6. ARRAYS AND STRUCTURES 209

syscall

li $v0, 4

la $a0, indextext

syscall

li $v0, 1

move $a0, $t7

syscall

#terminate program

li $v0, 10

syscall

Output:

minimum sum: 21 at index: 8

-- program is finished running --

Assuming the lowest index in any dimension is 0, the address of an el-
ement with size elementsize for a scalar, a vector, a matrix and a rank-3
tensor all starting at base address base can be calculated as follows:

entity element address
scalar a base

vector ai base + i×elementsize
matrix aij base + (i×dimj+j)×elementsize
tensor aijk base + [(i×dimj+j)×dimk+k]×elementsize

...
...

...

Exercise:

In case of a three-dimensional object a of doubles (8 bytes)
with dimensions dimi×dimj×dimk = 3 × 4 × 5 starting at
address 0x10010000, what would be the address of element
a123?

❉

A structure is a set of data of (possibly) different type. Yet, the technique
of finding a field of our ’struct’ is very similar to finding an element in an
array. The example below makes this more clear (see also Figure 91):

Source code:

210CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

Figure 91: An example of a structure (set of informations of different types)
used for the programming example.

###

MIPS Assembly program that shows how to implement a struct

###

.data

nameprompt: .asciiz "name:"

ageprompt: .asciiz "age:"

genderprompt: .asciiz "gender:"

cityprompt: .asciiz "City:"

mystruct: .word 0:129

name: 256 chars ASCII = 64 words

age: 1 byte = 1 word

gender: 1 char = 1 word

city: 256 chars ASCII = 64 words

#--------------------------+

130 words = 520 bytes

.text

li $v0, 4

la $a0, nameprompt

syscall

la $a0, mystruct

li $a1, 256

li $v0, 8

syscall # read string. $a0 = string address, $a1 = max length

li $v0, 4

la $a0, ageprompt

syscall

li $v0, 5

syscall # read int into $v1

la $a0, mystruct

10.7. FLOATING POINT 211

addi $a0, $a0, 256 # we have to calculate where the age int is

in the struct

sw $v0, 0($a0)

li $v0, 4

la $a0, genderprompt

syscall

la $a0, mystruct

addi $a0, $a0, 260 # we have to calculate where the gender byte is

in the struct

li $a1, 10 # it reads max 9 chars. Note: It may overwrite the

adjoining city string!

li $v0, 8

syscall # read string

li $v0, 4

la $a0, cityprompt

syscall

la $a0, mystruct

addi $a0, $a0, 264 # we have to calculate where the city string is

in the struct

li $a1, 256

li $v0, 8

syscall # read string. $a0 = string address, $a1 = max length

#terminate program

li $v0, 10

syscall

Output:

name:John Doe

age:23

gender:m

City:Amsterdam

-- program is finished running --

10.7 Floating point

In the chapter on computers (Ch. 6) the IEEE 754 standard was introduced
for floating point numbers. As discussed, since all information is integer
(bot the fraction and the exponent), we could implement this with integer
operations. However, most MIPS architectures nowadays have dedicated
co-processors to do the floating-point calculations. The co-processor is sim-
ilar to the integer processor. It also has 32 registers, each 32 bits wide,
$f0. . . $f31. These can thus store 32 single-precision floats, or 16 double-
precision floats. In the latter case, two consecutive registers store the num-
ber, with the higher-number register containing the most-significant bits.
So, for instance, the pair {$f4,$f5} can store a 64-bit double-precision float

212CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

int

registers

main

memory

�oat

registers

lw
, lh

, lb

sw
, s

h, s
b

lwc1, lwd1

mtc1
mfc1

move

mov.�� 	
�.�

swc1, swd1

Figure 92: MIPS move instructions to copy from and to main memory, the
integer registers and float registers.

with $f5 containing the sign bit, the eleven exponent bits and the twenty
leftmost fraction bits. (The syntax for such instructions is only indicate the
first of the two registers, which should always be an even-numbered register;
$f0, $f2, etc.)

MIPS comes with a set of instructions specifically for floating point op-
erations and exchanging bit patterns between the float-registers and regular
int-registers. Let’s first look at how to move information about, see Figure
92
The first set is main memory access, and this has only direct-addressing
mode (no immediate versions), see Appendix G:

• lwc1 $fd, offset($rt): copy 4-byte contents of address pointed to
by $rt+offset into register $fd of the co-processor.

• lwd1 $fd, offset($rt): copy 8-byte contents of address pointed to
by $rt+offset into registers {$fd,$fd+1} of the co-processor.

• swc1 $fs, offset($rt): copy 4-byte contents of register $fs of the
co-processor into consecutive addresses pointed to by $rt+offset.

• swd1 $fs, offset($rt): copy 8-byte contents of registers {$fs,$fs+1}
of the co-processor into consecutive addresses pointed to by $rt+offset.

10.7. FLOATING POINT 213

Copying data within the co-processor, like copying in the main processor, is
done with move instructions:

• mov.s $fd, $fs: Copy contents of single-register $fs into single-
register $fd.

• mov.d $fd, $fs: Copy contents of double-registers {$fs,$fs+1} into
double-registers {$fd,$fd+1}.

Copying data between processors. Note that these do not convert the data;
they simply copy the bit pattern:

• mtc1 $rs, $fd: (Move to). Copy contents of int-register $rs into
register $fd of the co-processor.

• mfc1 $rd, $fs: (Move from). Copy contents of float-register $fs into
int-register $rd.

There are no ’immediate’ versions of loading values into floating-point reg-
isters. We have to load-immediate the bit pattern into an int-register and
copy it from there to the desired float-register, it thus effectively being part
of the code segment:
.eqv pi 0x40490fdb

.text

li $t0, pi

mtc1 $t0, $f0

or have the float in the data segment and load it
.data

pi: .float 3.14159265358979323846264338327

.text

la $t0, pi

lwc1 $f0, 0($t0)

Data conversion:

• cvt.TO-TYPE.FROM-TYPE $fd, $fs: Convert $fs from format FROM-TYPE
to format TO-TYPE (either ’s’, ’d’, or ’w’) and store the result in $fd.
Example:

cvt.d.w $f0, $f3

convert the integer in $f3 to double and store the result in registers
{$f0,$f1}. Both operands are in the floating point co-processor; it
can thus store integers as well.

Example:

Source code:

214CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

##

MIPS Assembly program to convert int to float

##

.text

li $t0, 9 # substitute your int here

mtc1 $t0, $f0 # move bit pattern to $f0

cvt.s.w $f12, $f0 # convert word in $f0 to float and put in $f12

li $v0, 2

syscall # print float in $f12

li $v0, 10

syscall

check in Coproc 1:$f12 what the hex code is for the number

Output:

9.0

-- program is finished running --

Conditional branching: In contrast to integer branching instructions, that
can go in a single step, floating-point branching always goes in two steps. In
the first step the condition is calculated and in the second step a conditional
jump is made on basis of the resulting condition value:

• c.COND.SIZE $fs, $ft: Sets condition flag true or false. COND: ’eq’,
’lt’, or ’le’. SIZE: ’s’, or ’d’, Example:

c.lt.d $f0, $f4

Set condition flag to true if double {$f0,$f1} is less than double
{$f4,$f5}.

• bc1t address: Jump to address if condition flag in co-processor-1 is
true. Like for integer -condition branching, only jumps local addresses.
Example:

bc1t mylabel

nop

The nop (no-operation) instruction is needed to align the next code to
an address being a multiple of 4 (because such branching instructions
are less than 4 bytes).
bc1f address: Same as bc1t, but branches when condition is false.

10.7. FLOATING POINT 215

Floating-point arithmetic is done by the same mnemonics as was used for
integer arithmetic by simply adding a specification of the format (.s or .d).
Note that, also here, there is no ’immediate’ variant of the instructions; the
input operands are always registers.

• OP.TYPE $fd, $ft, $fs: Perform arithmetic operation OP (’add’, ’sub’,
’mul’ or ’div’) of type TYPE (’s’ or ’d’) on $fs and $ft and store the
result in $fd. Example:

add.d $f0, $f2, $f4

Add the double in {$f4,$f5} to the double in {$f2,$f3} and store the
result in {$f0,$f1}

That’s all there is to floating point in MIPS. We finish this section with a
worked out example of floating point calculations. Namely a way to calculate
any function with the method of Newton-Raphson (See page 140 of Chapter
6). In this example we calculate the square root. This is a floating point
function that is not implemented in hardware, so we have to calculate it
with software. This is not so difficult, as will be shown. Calculating the
square-root of A consisted of finding the zero of the function f(x) = x2 −A
by successive iterations, every iteration starting from the last approximation
and predicting the zero from the function value and derivative at that point.
Below here is the entire Newton-Raphson root-calculation in MIPS, with
0.000001 precision.

###

MIPS assembler program implements Newton-Raphson method

to calculate the square root of a number

###

.data

answer: .asciiz "Its square root is: "

precision: .float 0.000001

half: .float 0.5

.text

li $a0, 30 # argument: 30

mtc1 $a0, $f0 # move to co-processor

cvt.s.w $f0, $f0 # convert int to float

lwc1 $f1, precision # load 0.000001 into $f1

f0: A

f1: precision

f2: x_i

lwc1 $f3, half

mov.s $f2, $f0 #x0 = A as seed

216CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

dowhile:

new xi = (xi + A/xi)/2

div.s $f5, $f0, $f2 # $f5 = A/xi

add.s $f5, $f2, $f5 # $f5 = xi+A/xi

mul.s $f5, $f5, $f3 # $f5 = (xi+A/xi)/2 = new xi

sub.s $f4, $f2, $f5 # $f4 = new xi - old xi

abs.s $f4, $f4 # $f4 = |new xi - old xi| = dx

mov.s $f2, $f5

c.lt.s $f4, $f1

bc1f dowhile

print result:

la $a0, answer

li $v0, 4

syscall

mov.s $f12, $f2

li $v0, 2

syscall # print float in $f12

li $v0, 10

syscall # end program

Output:

Its square root is: 5.4772253

-- program is finished running --

Exercise:

Write a program that finds out which of the pairs of coor-
dinates is closest to each other? The distance is given by

dij =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2.

The data of the 10 points in space are given by

.data

mylabel: .float

-86.197052961678, -11.611577927042, 61.992590409186,

13.27904907337, 19.916714939069, -20.722319227382,

-4.2258863849783, 45.297465287969, -90.569809463764,

-95.944184921756, 47.662103394222, 64.51404880929,

-21.807443326017, -24.698308698634, 75.762861069285,

-36.654951049497, 43.494575924847, 86.447702712523,

47.778522103541, -65.538547015254, 59.179507921132,

54.530144848978, -67.933306319424, -36.693280039158,

84.306270676353, 21.53150037385, 44.934044045448,

73.659364837401, 81.085378856605, -73.1797878870

10.8. FUNCTIONS AND THE STACK 217

������

function

function

call

code

?
?

call

call���

���

Figure 93: Difference between simple jumping (GOTO) on the left and
function calling (GOSUB) on the right. For function calls we have to remember
what was the address of the code that was interrupted by the function call,
otherwise we do not know where to return to.

They are organized according to:
x1, y1, z1,
x2, y2, z2,
etc.

10.8 Functions and the stack

Procedures and functions — the difference between them is that functions
return a value, where procedures don’t – are code that can be called from
anywhere within the program, including other procedures and functions. If
a function calls itself, it is called recursive, an example of which will be given
here too. The important thing of functions and procedures is that, after the
code of them has finished, the program should continue at the point where
it was interrupted by the function call, see Figure 93. It therefore has to
save somewhere this information of where it was interrupted. We will see
how this is done. In fact, MIPS is already well prepared for implementing
this high-level programming concept, a concept that for instance in BASIC
is GOSUB, there where simple jumps are GOTO.

In a first example we will use a very simple procedure that prints a text.
Note that the address of the text is passed as an argument to the procedure.
This avoids that the procedure is dependent on the rest of the program and
in this way we can write code that can be recycled. If we do our work
carefully, functions can be taken out of our program and inserted in other
programs without any modification. In fact, we can keep a set of functions
– a library of functions – in separate files, ready to be used when necessary.
This ensures that we will not keep reinventing the wheel every time we need

218CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

it.
The main difference between normal code we have seen so far and func-

tions is that a function can be called from various places in the program, and
when the function finishes the program should continue at the instruction
directly following the code that called the function. Therefore, simple jump
(j) instructions are not adequate, because they jump to a static address (the
value of the label contained in it), see Figure 93.

A call to the function is done by a so-called jump-and-link (jal) to that
address. This is doing two distinct things:

• Calculate pc+4 and save this in register $ra. pc+4 → ($ra). It points
to the first instruction after the jal.

• j address, or in other words, address → pc.

Now note the direct ’4’ at one of the input gates of the ALU in architecture
of Figure 86. This now makes sense; the jal instruction is directly imple-
mented in hardware and is thus faster than it would have been had it been
implemented by software.

Returning from a function is achieved by a jump-to-register, which re-
turns to the main program.

• jr $ra. Or in other words, ($ra) → pc.

To make functions independent of the main code, functions cannot use
information of the main program! In high-level programming it means that
functions are not allowed to use global variables. If information is to be used
in a function, this information has to be passed to the function, either by
directly supplying the value, or by supplying the address where the value is
stored. The former is called passing by value, the latter passing by reference.
Similarly, if the function generates a value, it should not store this in a global
variable, but rather in the return value (or placed in the memory address
that was passed to the function as an argument).

In MIPS Assembly, four registers are used to pass arguments to functions,
$a0 . . . $a3. If more arguments are needed, for instance an entire array, we
have to pass the address of the information to the function. In the following
example, the function is placed after the main code. It simply prints the
string (an array of chars), the address of which is passed as an argument in
$a0.

###

MIPS Assembly program that shows how

to implement a procedure

###

.data

10.8. FUNCTIONS AND THE STACK 219

text1: .asciiz "Text to print\n"

.text

la $a0, text1 # argument passed to procedure

jal procedure # call procedure

stores pc+4 into $ra and makes a "j procedure"

returning from procedure, program continues

with next instruction:

terminate program:

li $v0, 10

syscall

################ FUNCTIONS: ####################

procedure:

###

arguments:

$a0: address of null-terminated string

return value(s):

none

###

li $v0, 4

syscall

jr $ra # return to address saved in $ra

Output:

Text to print

-- program is finished running --

The following example shows how to implement a function that receives
arguments and returns a value. In this case it implements the function xn,
with x and n received in $a0 and $a1, respectively, and the function returns
the calculated value in $v0.

###

MIPS Assembly program that shows how

to implement a function

###

.data

.text

li $a0, 3

li $a1, 5

jal power # call function $v0 = power($a0, $a1)

print result:

move $a0, $v0

220CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

li $v0, 1

syscall

terminate program:

li $v0, 10

syscall

################ FUNCTIONS: ####################

power:

###

arguments:

$a0: x

$a1: n

return value(s):

$v0: x^n

implemented with a while loop

###

li $v0, 1

power_startloop:

beqz $a1, power_exit

mul $v0, $v0, $a0

subi $a1, $a1, 1

j power_startloop

power_exit:

jr $ra

Output:

243

-- program is finished running --

Moreover, to make functions fully independent of the rest of the code,
the state of the registers has to be unaltered by the function call and they
thus have to be saved somewhere, and the stack is an ideal place for that.
In MIPS we use the following convention:

• The t-registers are the responsibility of the calling code. The ’caller’.
If the caller is still going to use these t-register values after the function
call, the caller has to save them before calling the function and retrieve
them immediately after returning from the function. Note that t-
registers that will no longer be needed after the function call do not
have to be saved. Note also that no s-registers have to be saved at all.
”Not my problem!”

• The s-registers are the responsibility of the called code. The ’callee’.
If the callee (function) is going to use these s-registers in the function,
the callee has to save their values before using these registers and make
sure to retrieve them all before exiting the function; the caller relies

10.8. FUNCTIONS AND THE STACK 221

— or might rely; we have to assume they do! — on the fidelity of the
s-register values. Note that s-registers that will not be used by the
callee function do not have to be saved. Note also that no t-registers
have to be saved at all by the callee. ”Not my problem!”

These registers have to be saved somewhere in memory before the instruc-
tions of the function are executed and retrieved afterwards. The best place
to do that is the stack. A stack differs from conventional memory — the
’heap’ — in that, whereas all elements of the heap are always accessible at
all times, only the top value of the stack — the latest one placed there —
is accessible. This implements the LIFO-concept (last in, first out). We can
thus place a value — ’push’ — on top of the stack, or remove — ’pop’ —
one from the stack. Special instructions for popping and pushing items on
the stack do not exist, but they can easily be implemented. There does exist
a stack pointer register ($sp). Pushing and popping is thus implemented as
(an example of storing $rt):

• push:
addi $sp, $sp, -4

sw $rt, ($sp)

• pop:
lw $rt, ($sp)

addi $sp, $sp, 4

If we want to save/retrieve multiple items at once, we can do it with things
like this, grouping them to save on stack advancing instructions:
addi $sp, $sp, -12

sw $t0, 0($sp)

sw $t1, 4($sp)

sw $t2, 8($sp)

...

lw $t0, 0($sp)

lw $t1, 4($sp)

lw $t2, 8($sp)

addi $sp, $sp, 12

The stack is thus growing and shrinking every time we push and pop items.
Note that we have to do this in the correct order (last in, first out) and also
in the correct number; every item pushed on the stack must be popped off
it, otherwise the stack runs the risk of over- or underflowing. Note also that
the order of changing the stack pointer and accessing the memory pointed
to by the stack pointer is reversed in pops and pushes, as shown here above.
The reason may be obvious.

The code below shows an example of a main code and a function that
both use both $t0 and $s0 where it is shown which one is responsible for

222CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

saving and restoring which of these register values. It loads the values of
3 and 4 into $t0 and $s0, then copies these to $a0 and $a1 because the
function expects them as arguments there. The caller code saves the t-
register on the stack and the function the s-register it uses. As can be seen,
the values are restored and when printed they have their original value of 3
and 4 at the end.

###

MIPS Assembly program that shows how

to use the stack

###

.text

li $t0, 3

li $s0, 4

move $a0, $t0 # pass arguments

move $a1, $s0 # to function

addi $sp, $sp, -4 # push $t0

sw $t0, ($sp) # onto stack

jal multiply # call function

lw $t0, ($sp) # pop $t0

addi $sp, $sp, 4 # from stack

print result:

move $a0, $v0

li $v0, 1

syscall

check if $t0 and $s0 changed:

move $a0, $t0

syscall # print $t0

move $a0, $s0

syscall # print $s0

terminate program:

li $v0, 10

syscall

#----------------- FUNCTIONS: -----------------#

multiply:

###

arguments:

$a0: int

$a1: int

return value(s):

$v0 = $a0 * $a1

###

addi $sp, $sp, -4 # push $s0

sw $s0, ($sp) # onto stack

move $t0, $a0

move $s0, $a1

10.8. FUNCTIONS AND THE STACK 223

mul $v0, $t0, $s0

lw $s0, ($sp) # pop $s0

addi $sp, $sp, 4 # from stack

multiply_exit:

jr $ra

Output:

1234

-- program is finished running --

Note that, if the function is going to call other functions, we also need
to save the return address on the stack before we issue a jal. Here is
an example of a recursive function that calculates the factorial n! of the
argument n:

###

MIPS Assembly program that shows an

example of a recursive function

###

.text

li $a0, 5

jal factorial

#print result:

move $a0, $v0

li $v0, 1

syscall

terminate program:

li $v0, 10

syscall

################ FUNCTIONS: ####################

factorial:

###

arguments:

$a0: int n

return value(s):

$v0 = n!

###

li $v0, 1

beqz $a0, factorial_exit # 0! = 1; exit

addi $a0, $a0, -1

addi $sp, $sp, -4 # save $ra

sw $ra, ($sp) # onto stack

jal factorial # $v0 = (n-1)!

lw $ra, ($sp) # retrieve $ra

224CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

addi $sp, $sp, 4 # from stack

addi $a0, $a0, 1

mul $v0, $v0, $a0 # $v0 = n*(n-1)!

factorial_exit:

jr $ra

Output:

120

-- program is finished running --

10.9 Macros (pseudo-instructions)

The instruction set of MIPS is rather limited, as we have seen. This means
that some very obvious instructions are not implemented. An example is
the copy instruction. Believe it or not, but there does not exist hardware to
copy the contents of one register directly to another register. The trick, as
we have seen, is to add the zero register ($zero) containing all zeros to the
source register and place the result in the destination register. These things
are needed when using a RISC approach with few instructions. We thus
have now a copy instruction, curiously named move, that copies the content
of one register to another. Given the fact that OR or XOR is simpler than
ADD in terms of hardware, the move instruction

move $rd, $rs

can better be translated into
or $rd, $zero, $rs

Likewise, as we have seen, the load-immediate value is not implemented,
and, as a fact, cannot be implemented, because a 32-bit value word plus the
6-bit opcode cannot ever fit in a 32-bit instruction. Therefore, only a load-
upper -immediate instruction (lui) exist. This places the 16-bit halfword
immediate value contained in the instruction into the upper 16 bits of the
destination register. 16 bit (value) plus 6 bit (opcode) plus 5 bit (destination
register specification) do easily fit in a 32-bit instruction. The lower 16 bits
halfword would then require a similar load-lower-immediate lli instruction.
However, once again the engineers of MIPS were very smart, realizing that
this function is redundant, since it is equivalent to

ori $rd, $zero, halfword

So, the instruction
li $rd, word

can be translated into the two MIPS instructions
lui $rd, halfword1

ori $rd, $zero, halfword2

with halfword1 equal to word logic-shifted-right 16 bits, and halfword2

equal to word AND 0x0000FFFF, calculations the assembler must perform.

10.9. MACROS (PSEUDO-INSTRUCTIONS) 225

We can call these instructions pseudo-instructions; they are not directly
implemented in hardware, but can easily be translated into real instruc-
tion(s). An assembler such as MARS we are using (or alternatively SPIM,
another well-known MIPS assembler) supplies a list of pseudo-instruction
mnemonics and their implementation. Some of them may be directly trans-
lated into machine code, while others are translated into other instruction(s)
before being finally translated into machine code. In any case, it is free to
the developer of the assembler to chose the names for the mnemonics. What
is not free to chose is the resulting binary machine code (opcodes, etc.),
which has been designed by the MIPS processor developer. If I were writing
an assembler, I’d rather chose copy for the mnemonic instead of move, since
move hints at that it disappears at the source, which it doesn’t. However,
’move’ seems to be rather standard in the computer architecture world.

Many assemblers also allow for designing our own pseudo-codes. These
are called macros and come in handy when we have code we often write. In
MARS, a macro is written by

.macro macroname (%parameter1, %parameter2, ...)

MIPS code here

.end_macro

A simple example without parameters is an ’instruction’ to end our program
.macro done

li $v0, 10

syscall

.end_macro

and we can now simply terminate our program with the instruction
done

To show how a macro can take parameters, we implement a terminate-with-
return-value macro:

.macro return (%exitcode)

li $v0, 17

li $a0, %exitcode

syscall

.end_macro

This can now be used to terminate our program with an error code, maybe
return (-1)

In this case the %exitcode is verbatim copied in the interpretation of the
instructions within the macro. If you use it with an integer, as in return(1),
it will result in an instruction li $a0, 1. If you use it with a register, as
in return($t0), it will translate into li $a0, $t0, which does not make
sense and will generate an error at assemble-time.

Appendix G shows a list of some useful macros/pseudo-instructions im-
plemented in MARS, and written by the author. First the instruction
from incrementing and decrementing registers, useful when implementing
for-loops.

226CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

.macro inc %reg

addi %reg, %reg, 1

.end_macro

.macro dec %reg

addi %reg, %reg, -1

.end_macro

After which we have the two pseudo-instructions
inc $rt

dec $rt

which we might put on our personal instructions reference card if we wish to
do so. Maybe the most useful are stack-instructions push and pop, placing
registers on the stack and removing items from the stack respectively:

.macro push %reg

addi $sp, $sp, -4

sw %reg, 0($sp)

.end_macro

.macro pop %reg

lw %reg, 0($sp)

addi $sp, $sp, 4

.end_macro

But macros can even be very sophisticated, including nesting (macros us-
ing other macros) as this example of a full for-loop printing the squares of
numbers from 1 to 10 shows:

.macro square (%intreg)

mult %intreg, %intreg

mflo %intreg

.end_macro

.macro printsquare (%intreg)

move $a0, %intreg

square $a0

li $v0, 1

syscall

li $a0, 0x20 # space

li $v0, 11

syscall

.end_macro

.macro for (%regi, %fromi, %toi, %whattodomacro)

ori %regi, $zero, %fromi

forloop:

%whattodomacro (%regi)

10.10. EXTENSIVE EXAMPLE: GAUSS METHOD FOR SOLVING EQUATIONS227

addi %regi, %regi, 1

ble %regi, %toi, forloop

.end_macro

for ($t0, 1, 10, printsquare)

Which will output 1 4 9 16 25 36 49 64 81 100 . (Note that it is not
really a C for-loop, which, as we know, verifies the condition at the beginning
of the loop, making it possible that the whattodomacro is never even run
once. A good exercise is to convert the code above to make it C compatible,
for(i=1; i<=10; i++) printsquare(i);).

Note that these are not functions, although they may very much look
like them; the for-loop example above comes very close to a program in C.
Yet, these are simply macros that are transcribed by the assembler into real
MIPS code and then translated into machine language. Nothing more. At
runtime the macros are gone, while C-functions are part of the executable
code.

10.10 Extensive example: Gauss method for

solving equations

With our knowledge of MIPS we can now work on more complex matters.
As an example we will write a program for implementing the Gauss method
for solving equations. As we have learned from linear algebra, we can solve
a set of n equations with n incognitos using this method. We are going to
do exactly the same here now. (A note up front: we will use the informatics
convention that indexes start with 0). Detail: we only consider ’nice’ sets
of equations here that can be solved and give no trouble in rounding. As a
test, we will solve the following set of equations:

2x+ y − 3z = −1
−x+ 3y + 2z = 12

3x+ y − 3z = 0

which, as we can easily find out, has the solution x = 1, y = 3, z = 2. How
does the method of Gauss work? We start by constructing an (n + 1) × n
matrix with the coefficients and the independent values. In this case a 4× 3
matrix:

2.0 1.0 −3.0 −1.0
−1.0 3.0 2.0 12.0
3.0 1.0 −3.0 0.0

 .

228CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

Step 1: on line 0, divide all elements by a00 (= 2.0):

1.0 0.5 −1.5 −0.5
−1.0 3.0 2.0 12.0
3.0 1.0 −3.0 0.0

 .

We now have a desired 1 on the diagonal.
Step 2: With the diagonal element (a00 = 1) zero out all elements above
and below, i.e., subtract line 0 from line 1 with factor = a01/a00 (= −1.0),
or add line 0 to line 1 with factor = −a01/a00 (= 1.0):

1.0 0.5 −1.5 −0.5
0.0 3.5 0.5 11.5
3.0 1.0 −3.0 0.0

 ,

and line 0 from line 2 (subtract with factor = a02/a00 = 3.0)

1.0 0.5 −1.5 −0.5
0.0 3.5 0.5 11.5
0.0 −0.5 1.5 1.5

 .

Repeat for all n lines. Goto step 1 and do the same with a11, divide line by
a11 (= 3.5) and zero out all elements above and below a11. Repeat for all n
diagonal elements (2 in this case). The final matrix is then

1.0 0.0 0.0 1.0
0.0 1.0 0.0 3.0
0.0 0.0 1.0 2.0

 .

The solution is now the last column of the matrix, which we print. The
MIPS program below implements this algorithm. We make functions for all
the important passes. All these functions receive the address of the matrix
in $a0 and its dimension n in $a1. Other arguments are passed in $a2 and
$a3, and in one case a float is directly passed through $f12:

• element_ij places the value of aij in $v0, and its address in $v1

(handy, as we will see). C equivalent:
float element(float *a, int n, int i, int j)

• printmatrix prints the (n+1)×n matrix. printsolution prints the
last column (n) of this matrix. C equivalent:
void printmatrix(float *a, int n)

void printsolution(float *a, int n)

• diagonal_i creates a 1 on diagonal aii. C equivalent:
void diagonal(float *a, int n, int i)

10.10. EXTENSIVE EXAMPLE: GAUSS METHOD FOR SOLVING EQUATIONS229

• subtractline_i1i2f subtracts line i1 from line i2 with a factor f
(passed in $f12). C equivalent:
void subtractline(float *a, int n, int i1, int i2, float f)

• sweepdown_x and sweepup_x clear the matrix below and above diag-
onal element axx. C equivalent:
void sweepdown(float *a, int n, int x)

void sweepup(float *a, int n, int x)

To highlight the use of registers and stack, we will use s-registers for the line
index and t-registers for the column index. Very much care has to be taken
to save the registers (of the correct type) at the correct place. Remember,
all t-registers that will still be used, have to be saved on the stack by the
calling routine just before calling the function (and restored immediately
after returning from the function) while s-registers, those that will be used
by the function, have to be saved on the stack by the called function right
at the start, and recovered from the stack just before leaving the function.

###############################

MIPS Assembly macros

macros.asm

###############################

.macro push %reg

addiu $sp, $sp, -4

sw %reg, 0($sp)

.end_macro

.macro pop %reg

lw %reg, 0($sp)

addiu $sp, $sp, 4

.end_macro

.macro inc %reg

addi %reg, %reg, 1

.end_macro

.macro dec %reg

addi %reg, %reg, -1

.end_macro

.macro done

li $a0, 0

li $v0, 17

syscall

.end_macro

230CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

###

MIPS Assembly program using Gauss’ method to solve

a system of n equations with n unknowns

###

.include "macros.asm"

.eqv n 3 # number of independent variables

.data

spaces: .asciiz " "

newline: .asciiz "\n"

textstart: .asciiz "Start array:\n"

textend: .asciiz "End array:\n"

textendresult: .asciiz "End result:\n"

array: .float

2.0, 1.0, -3.0, -1.0,

-1.0, 3.0, 2.0, 12.0,

3.0, 1.0, -3.0, 0.0

.text

main:

print start array:

la $a0, array

li $a1, n

la $a2, textstart

jal printarray

li $t0, 0 # i

li $t1, n

startdiagonalloop:

beq $t0, $t1, enddiagonalloop

la $a0, array

li $a1, n

move $a2, $t0

push $t0

push $t1

jal diagonal_i

pop $t1

pop $t0

now we have a 1 at the diagonal a[i,i]

la $a0, array

li $a1, n

move $a2, $t0 # x

push $t0

push $t1

jal sweepdown_x

pop $t1

pop $t0

column below a[i,i] is all zeros!

la $a0, array

li $a1, n

move $a2, $t0 # x

push $t0

10.10. EXTENSIVE EXAMPLE: GAUSS METHOD FOR SOLVING EQUATIONS231

push $t1

jal sweepup_x

pop $t1

pop $t0

column above a[i,i] is all zeros!

inc $t0 # next diagonal

j startdiagonalloop

enddiagonalloop:

la $a0, array

li $a1, n

la $a2, textend

jal printarray

la $a0, array

li $a1, n

la $a2, textendresult

jal printsolution

done # terminate

#----------------------- FUNCTIONS ---------------------------#

###

sweepdown_x:

###

Zeros all elements in a column x starting from line x+1

with help from element[x,x]=1.0

arguments:

a0 = *array

a1 = n

a2 = x

return:

void

###

push $ra

push $s0

move $s0, $a2 # save original x

li $t1, n

move $t0, $s0

startloop_sd:

inc $t0 # i++

beq $t0, $t1, endloop_sd

move $a2, $t0 # i

move $a3, $s0 # j

push $t0

push $t1

jal element_ij # v0 now contains a[i,j]

pop $t1

pop $t0

mtc1 $v0, $f12 # f12 now contains a[i,j]

li $a1, n

232CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

move $a2, $s0 # i1

move $a3, $t0 # i2

push $t0

push $t1

jal subtractline_i1i2f

pop $t1

pop $t0

j startloop_sd

endloop_sd:

pop $s0

pop $ra

jr $ra

###

sweepup_x:

###

Zeros all elements in a column x starting from line x-1

with help from element[x,x]=1.0

arguments:

a0 = *array

a1 = n

a2 = x

return:

void

###

push $ra

push $s0

move $s0, $a2 # save original x

move $t0, $s0

startloop_su:

dec $t0 # i--

bltz $t0, endloop_su

move $a2, $t0 # i

move $a3, $s0 # j

push $t0

jal element_ij # v0 now contains a[i,j]

pop $t0

mtc1 $v0, $f12 # f12 now contains a[i,j]

li $a1, n

move $a2, $s0 # i1

move $a3, $t0 # i2

push $t0

jal subtractline_i1i2f

pop $t0

j startloop_su

endloop_su:

pop $s0

pop $ra

jr $ra

###

subtractline_i1i2f:

10.10. EXTENSIVE EXAMPLE: GAUSS METHOD FOR SOLVING EQUATIONS233

###

Subtract line i1 from line i2 by factor f

arguments:

a0 = *array

a1 = n

a2 = i1

a3 = i2

f12 = f

return:

void

###

save all $s regs that we’ll use and $ra:

push $ra

push $s0

push $s1

push $s5

push $s6

move $s0, $0 # j

li $s1, n

inc $s1 # n+1

move $s5, $a2 # save i1

move $s6, $a3 # save i2

startloop_sl:

beq $s0, $s1, endloop_sl

move $a2, $s5 # i1

move $a3, $s0 # j

jal element_ij # $v0 now contains a[i1,j]

mtc1 $v0, $f10 # f10 now contains a[i1,j]

mul.s $f10, $f10, $f12 # f10 now contains f*a[i1,j]

mtc1 $0, $f0

sub.s $f10, $f0, $f10 # f10 now contains -f*a[i1,j]

move $a2, $s6 # i2

move $a3, $s0 # j

jal element_ij # $v0 now contains a[i2,j],

$v1 contains addr of a[i2,j]

mtc1 $v0, $f11 # f11 now contains a[i2,j]

add.s $f11, $f11, $f10 # f11 now contains a[i2,j]-f*a[i1,j]

swc1 $f11, 0($v1)

inc $s0

j startloop_sl

endloop_sl:

recover all saved regs:

pop $s6

pop $s5

pop $s1

pop $s0

pop $ra

jr $ra

###

diagonal_i:

###

Divides all elements on a line i by element a[i,i]

234CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

arguments:

a0 = *array

a1 = n

a2 = i

return:

void

###

push $ra

push $s0

push $s1

move $a3, $t0 # element_ii

push $t0

jal element_ij #$v0 = array[i,i]

pop $t0

mtc1 $v0, $f8 # f8 = divisor element; all elements

on line should be divided by $s3

divide line loop j ($s0)

li $s0, 0 # j

li $s1, n

inc $s1 # n+1

startloopj_d1:

beq $s0, $s1, endloopj_d1

la $a0, array

li $a1, n

move $a2, $t0

move $a3, $s0 # element_ij

push $t0

push $t1

jal element_ij #$v0 = array[i,j], $v1 = addr of array[i,j]

pop $t1

pop $t0

mtc1 $v0, $f12

div.s $f12, $f12, $f8

swc1 $f12, 0($v1)

inc $s0

j startloopj_d1

endloopj_d1:

pop $s1

pop $s0

pop $ra

jr $ra

##################################

printarray:

##################################

Prints an array (n+1)x(n)

arguments:

a0 = *array

a1 = n

a2 = *titlestring

return:

void

##################################

10.10. EXTENSIVE EXAMPLE: GAUSS METHOD FOR SOLVING EQUATIONS235

push $ra

push $s0

push $s1

li $v0, 4

move $a3, $a0

move $a0, $a2

syscall

move $a0, $a3

li $t1, n

li $s1, n

addi $s1, $s1, 1 # n+1

move $t0, $0 # i

startloopi_pa:

beq $t0, $t1, endloopi_pa

move $s0, $0 # j

startloopj_pa:

beq $s0, $s1, endloopj_pa

la $a0, array

li $a1, n

move $a2, $t0

move $a3, $s0

push $t0

push $t1

jal element_ij #$v0 = array[i,j]

pop $t1

pop $t0

mtc1 $v0, $f12

li $v0, 2

syscall

la $a0, spaces

li $v0, 4

syscall

inc $s0

j startloopj_pa

endloopj_pa:

la $a0, newline

li $v0, 4

syscall

inc $t0

j startloopi_pa

endloopi_pa:

la $a0, newline

li $v0, 4

syscall

pop $s1

pop $s0

pop $ra

jr $ra

##

printsolution:

##

Prints last column of array (n+1)x(n)

236CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

arguments:

a0 = *array

a1 = n

a2 = *titlestring

return:

void

##

push $ra

push $s0

push $s1

li $v0, 4

move $a3, $a0

move $a0, $a2

syscall

move $a0, $a3

li $s1, n

move $s0, $0 # i

startloopi_pr:

beq $s0, $s1, endloopi_pr

la $a0, array

li $a1, n

move $a2, $s0

li $a3, n

jal element_ij #$v0 = array[i,j]

mtc1 $v0, $f12

li $v0, 2

syscall

la $a0, newline

li $v0, 4

syscall

inc $s0

j startloopi_pr

endloopi_pr:

la $a0, newline

li $v0, 4

syscall

pop $s1

pop $s0

pop $ra

jr $ra

###

element_ij:

###

Returns element array[i,j]

arguments:

a0 = *array

a1 = n

a2 = i

a3 = j

return

$v0 = array[i,j]

$v1 = address of element array[i,j]

10.11. CALCULATING BLOCKCHAIN 237

###

move $t0, $a1

addi $t0, $t0, 1

mult $t0, $a2

mflo $t0

add $t0, $t0, $a3

li $t1, 4 #sizeof(float)

mult $t0, $t1

mflo $t0

add $v1, $a0, $t0

lw $v0, 0($v1)

jr $ra

Output:

Start array:

2.0 1.0 -3.0 -1.0

-1.0 3.0 2.0 12.0

3.0 1.0 -3.0 0.0

End array:

1.0 0.0 0.0 1.0

0.0 1.0 0.0 3.0

0.0 0.0 1.0 2.0

End result:

1.0

3.0

2.0

10.11 Calculating blockchain

Time to look at an extensive example to finalize this chapter. Blockchain
may serve very well. It consists of encrypting data by executing many simple
logical operations on it. Operations like XOR, shift-left, etc. Perfect for
assembly programming. More so since blockchain is money — or can be
money, in case of bitcoin — and time is money, so the faster our program
is, the richer we get.

The most famous is the secure hash SHA-256 algorithm that is shown
in Figure 94 (source of picture and description: ”Mining Bitcoin with pencil
and paper: 0.67 hashes per day” on Ken Shirriff’s blog). It takes eight 32-bit
pieces of data (A to H), and two key registers, Kt and Wt and performs the
following actions on them:

• The Ma majority box looks at the bits of A, B, and C. For each posi-
tion, if the majority of the bits are 0, it outputs 0. Otherwise it outputs
1. That is, for each position in A, B, and C, look at the number of 1
bits. If it is zero or one, output 0. If it is two or three, output 1.

238CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

A B C D E F G H

A B C D E F G H

Ch

�1

Ma

�1

W�
K�

8x32 = 256 bit

S
H

A
-2

5
6
:

Figure 94: Example of the SHA-256 algorithm of encrypting data (A-H).
Figure adopted from Wikipedia.

• The Σ0 box rotates the bits of A to form three rotated versions, and
then sums them together modulo 2. In other words, if the number of
1 bits is odd, the sum is 1; otherwise, it is 0. The three values in the
sum are A rotated right by 2 bits, 13 bits, and 22 bits.

• The Ch ’choose’ box chooses output bits based on the value of input
E. If a bit of E is 1, the output bit is the corresponding bit of F. If a
bit of E is 0, the output bit is the corresponding bit of G. In this way,
the bits of F and G are shuffled together based on the value of E.

• The next box, Σ1, rotates and sums the bits of E, similar to Σ0 except
the shifts are 6, 11, and 25 bits.

• The plus boxes, +�, perform 32-bit addition, generating new values for
A and E. The input Wt is based on the input data, slightly processed.
(This is where the input block gets fed into the algorithm). The input
Kt is a constant defined for each round.

Example of a single pass of SHA-256: Starting with
A = 0x87564C0C

B = 0xF1369725

C = 0x82E6D493

D = 0x63A6B509

E = 0xDD9EFF54

F = 0xE07C2655

G = 0xA41F32E7

H = 0xC7D25631

10.12. RARS: EVOLUTION OF MARS 239

Wt = 0x6534EA14

Kt = 0xC67178F2

we wind up with
A = 0xE620B22B

B = 0x87564C0C

C = 0xF1369725

D = 0x82E6D493

E = 0xADCEF783

F = 0xDD9EFF54

G = 0xE07C2655

H = 0xA41F32E7

That’s it. 64 times repeating and if the first 17 bits of register A are zeros,
then we have found a new block in the blockchain. If not, we have to start
with a new key (a.k.a. ’nonce’).

Exercise:

Write a MIPS program that calculates a blockchain: repeat-
ing starting with random keys and the data as given above
until the first 17 bits of A are 0.

10.12 RARS: Evolution of MARS

Like with any technology, over the years improvements were made. This led
to a new version of the architecture of MIPS, named RISC-V. Without going
into a lot of detail, we highlight here the major differences at the level of
Assembly. A good MIPS RISC-V Assembler is RARS (RISC-V Assembler
and Runtime Simulator) that can be found at TheThirdOne at github.com
(https://github.com/TheThirdOne/rars). The environment is very simi-
lar to MARS to which you are by now very familiar. Or should be. A full
manual on RISC-V can be found at https://riscv.org/technical/specifications/.
The main differences between RARS en MARS are:

• RISC-V is extensible to 64 bit

• No commas needed in RARS code, although can be used if wanted

• No $ to specify a register, the name of the register suffices

• Numbered registers prefixed with x. Example: x6 is equal to t1

• More ’argument’ registers: a0 to a7. See Table XXX for a list of
registers

• No ’return-value’ registers v0 and v1. Return values can be placed in
the a-registers

240CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

Table XXX: RISC-V (RARS) registers

Integer registers:
x0 zero x8 s0 x16 a6 x24 s8

x1 ra x9 s1 x17 a7 x25 s9

x2 sp x10 a0 x18 s2 x26 s10

x3 gp x11 a1 x19 s3 x27 s11

x4 tp x12 a2 x20 s4 x28 t3

x5 t0 x13 a3 x21 s5 x29 t4

x6 t1 x14 a4 x22 s6 x30 t5

x7 t2 x15 a5 x23 s7 x31 t6

Floating-point registers:
f0 ft0 f8 fs0 f16 fa6 f24 fs8

f1 ft1 f9 fs1 f17 fa7 f25 fs9

f2 ft2 f10 fa0 f18 fs2 f26 fs10

f3 ft3 f11 fa1 f19 fs3 f27 fs11

f4 ft4 f12 fa2 f20 fs4 f28 ft8

f5 ft5 f13 fa3 f21 fs5 f29 ft9

f6 ft6 f14 fa4 f22 fs6 f30 ft10

f7 ft7 f15 fa5 f23 fs7 f31 ft11

• The special multiplication and division registers $lo and $hi do no
longer exist. Multiplication and division instructions directly produce
the result in a destination register. For example

mul t2 t1 t0

(set t2 to the lowest 32 bits of t1×t0)

• To make code easily moved in space, addresses are described relative
to the program counter. Loaded by the instruction auipc (add upper
immediate to pc). As an example, if a label points to an object in the
data (text) segment at 0x1001000 and the following instruction is at
the start of the code segment 0x00400000

0x00400000 auipc x5 0x0fc10

it loads the address 0x1001000 into x5 (t0). It will left-shift the im-
mediate pattern by 12 places (adding 3 hexadecimal 0s) and add it to
the program counter (0x00400000).

• Jump instruction j does not exist. It is implemented with a jump-and-
link jal instruction, with the current address (not) saved in register
zero

j label

10.12. RARS: EVOLUTION OF MARS 241

becomes

jal zero label

With the attempt to write the pc in register zero not ignored (or at
least not successful). A regular jal label used for function calls is
still jal ra label

• Likewise, the jump-(to-address-in)-register jr has a different syntax,
it can now do relative addressing

jr reg

becomes

jalr reg 0

where an offset can be added to the address in register reg. (In this
case the offset is 0)

• Small differences in syntax: ecall instead of syscall (with the system
call number in a7 instead of $v0 and different registers used for the
arguments and return values, see Appendix K). asci instead of ascii

• Macros:
call label: Call a function (jump and link), implemented with

auipc x6 0

jalr x1 x6 relative-address

The first instruction is ’add upper immediate to pc’ and store in t1

(x6). The second instruction adds the relative address calculated by
the compiler to this stored pc and jumps to it, while storing the cur-
rent address in x1 (ra). Note that a value stored in t1 (x6) will be
lost by such a function call without our clear knowledge (since we only
used the word call). But, as we already knew that the calling code
(the ’caller’) has the responsibility to save all the relevant ’temporary’
registers on the stack (see, Section 10.8) this adds no extra restriction.
ret: return from function (implemented with jalr x0 x1 0, see above)
j label: jump to label-address (implemented with

jalr x0 relative-address,

see above)

• A compiler directive ebreak. Which is rather an emulator-environment
system feature and not a compiler directive, but can come in handy
for debugging purposes

• All 32 floating point registers are 64 bit. (See Table XXX)

• Multi-tasking instructions fence and fence.i to synchronize execu-
tion.

242CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

reserved rm
excep-

tions

NV DZ OF UF NX

31 87 5 4 0

01234

:
Rounding Mode (rm)

(bits 7-5) Mnemonic Meaning
000 RNE Round to Nearest. (.500 to Even)
001 RTZ Round Towards Zero
010 RDN Round Down (towards −∞)
011 RUP Round UP (towards +∞)
100 RMM Round to nearest. (.500 to Max Magnitude)
111 DYN DYNamic. Mode in instruction’s rm field

Exceptions
Bit Flag Mnemonic Meaning
4 NV iNValid operation
3 DZ Divide by Zero
2 OF OverFlow
1 UF UnderFlow
0 NX iNeXact

Figure 95: The RISC-V Floating-Point Control and Status Register
(FPCSR).

• 4096 control status registers (CSR) and a set of special instructions
dedicated to reading and writing in these control status registers. An
example is the floating-point control-and-status register (FPCSR) at
0x003, see Fig. 95. It contains the rounding mode, and exception flags
(NV, DZ, OF, UF and NX). An example is given below where the DZ
flag is read that occurs when division by zero is performed.

##

Program in RARS RISC-V to read floating point

status register (FPCSR)

##

.data

crss: .asciz "FP status register (0x003): "

nvs: .asciz "\nNV: "

dzs: .asciz "\nDZ: "

ofs: .asciz "\nOF: "

ufs: .asciz "\nUF: "

nxs: .asciz "\nNX: "

errors: .asciz "\nDivision by zero!"

10.12. RARS: EVOLUTION OF MARS 243

.eqv fpcsr 0x003

.text

li a7 4

la a0 crss

ecall

li t0 0

li t1 2

fcvt.d.w f0 t0

fcvt.d.w f1 t1

fdiv.d f2 f1 f0 # f2 = 2.0/0.0

csrr a0 fpcsr # load FP status register in a0

andi a1 a0 8 # mask bit 3 (division by zero error)

srai a1 a1 3 # right-shift 3 digits

li a7 1

ecall # print fpcsr

li a7 4

la a0 dzs

ecall # print "DZ: "

mv a0 a1

li a7 1

ecall # print DZ bit of FP status register

beqz a1 terminate

error:

la a0 errors

li a7 4

ecall

terminate:

li a7 10

ecall

Output:
FP status register (0x003): 8

DZ: 1

Division by zero!

-- program is finished running (0) --

• 32 64-bit counters in CSR registers, the lower 32-bits are in 0xc00-
0xc1f, the associated higher 32 bits in registers 0xc80-0x9f. ”The first
three of these (CYCLE, TIME, and INSTRET) have dedicated functions
(cycle count, real-time clock, and instructions-retired respectively),
while the remaining counters, if implemented, provide programmable
event counting.” Pseudo-instructions exist in RARS to have access to
these counters through the csrrs RISC-V instruction.:

rdcycle rd

rdcycleh rd

244CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

rdtime rd

rdtimeh rd

rdinstret rd

rdinstreth rd

##

Program in RARS RISC-V to read a timer

##

.data

prompt: .asciz "Give an integer:"

finaltext: .asciz "Cycles it took to reply: "

.text

repeatbefore:

rdtimeh t2

rdtime t1

rdtimeh t3

bne t3 t2 repeatbefore # make sure high did not

change while reading the times

start time in (t2, t1)

printsometext:

li a7 4

la a0 prompt

ecall

li a7 5

ecall

repeatafter:

rdtimeh t4

rdtime t3

rdtimeh t5

bne t5 t4 repeatafter # make sure high did not

change while reading the times

end time in (t3, t4)

li a7 4

la a0 finaltext

ecall

sub t2 t4 t2

sub t1 t3 t1

beqz t2 continue # high clock value changed?

li t5 0x80000000 # (+2^31)

add t1 t1 t5

add t1 t1 t5 # then t1 <-- 2^32+t1

continue:

li a7 1

mv a0 t1

ecall

10.12. RARS: EVOLUTION OF MARS 245

terminate:

li a7 10

ecall

Output:

Give an integer:5

Cycles it took to reply: 3206

-- program is finished running (0) --

• Special attention deserves the calculation of the immediate value. The
construction of the immediate value used in the operation depends on
the type of instruction. As an example,

lw x6 100(x5),

(load into x6 the word found in address stored in x5 plus the immediate
value 100). This is an instruction of type-I (see Appendix J) and the
immediate value thus coded in the 12 most-significant bits (31-20) of
the instruction. With the help of Appendix J we find that the opcode
is 3 and the fun3-code is 2, with the type-I format given, the machine
language instruction is

imm(12) tgt(5) fun(3) dst(5) opcode(7)

000001100100 00101 010 00110 0000011

0000 0110 0100 0010 1010 0011 0000 0011

0x 0 6 4 2 a 3 0 3

The immediate value is a sign-extended value, generated by adding
20 copies of the sign bit on the left of the 12-bit imm-field of the
instruction above. In this case the sign bit is 0, so the final immediate
value used in the operation is

0000 0000 0000 0000 0000 0000 0110 0100

See Figure 96. We see that bits 31-11 of the final immediate value
are copied from bit 31 of the imm-field, and bits 10-0 copied from bits
30-20 of the imm-field. The figure shows how the immediate value is
constructed for other instruction types as well.

An example of a RARS program, an evaluator of a two-operand expres-
sion, is given here. (For this simple example we omit the part of saving
registers on stack when calling functions):

##

Program in RARS RISC-V to calculate arithmetic

expressions

##

246CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

I-immediate

S-immediate

B-immediate

U-immediate

J-immediate

instruction
register

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

30
i

29
i

28
i

27
i

26
i

25
i

24
i

23
i

22
i

21
i

20
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

30
i

29
i

28
i

27
i

26
i

25
i

11
i

10
i

9
i

8
i

7
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

7
i

30
i

29
i

28
i

27
i

26
i

25
i

11
i

10
i

9
i

8
i

7
i0

31
i

30
i

29
i

28
i

27
i

26
i

25
i

24
i

23
i

22
i

21
i

20
i

19
i

18
i

17
i

16
i

15
i

14
i

13
i

12
i 0 0 0 0 0 0 0 0 0 0 0 0

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

19
i

18
i

17
i

16
i

15
i

14
i

13
i

12
i

20
i

30
i

29
i

28
i

27
i

26
i

25
i

24
i

23
i

22
i

21
i 0

31
i

30
i

29
i

28
i

27
i

26
i

25
i

24
i

23
i

22
i

21
i

20
i

19
i

18
i

17
i

16
i

15
i

14
i

13
i

12
i

11
i

10
i

9
i

8
i

7
i

6
i

5
i

4
i

3
i

2
i

1
i

0
i

31

31

31

31

31

31

30

30

30

30

30

30

29

29

29

29

29

29

28

28

28

28

28

28

27

27

27

27

27

27

26

26

26

26

26

26

25

25

25

25

25

25

24

24

24

24

24

24

23

23

23

23

23

23

22

22

22

22

22

22

21

21

21

21

21

21

20

20

20

20

20

20

19

19

19

19

19

19

18

18

18

18

18

18

17

17

17

17

17

17

16

16

16

16

16

16

15

15

15

15

15

15

14

14

14

14

14

14

13

13

13

13

13

13

12

12

12

12

12

12

11

11

11

11

11

11

10

10

10

10

10

10

9

9

9

9

9

9

8

8

8

8

8

8

7

7

7

7

7

7

6

6

6

6

6

6

5

5

5

5

5

5

4

4

4

4

4

4

3

3

3

3

3

3

2

2

2

2

2

2

1

1

1

1

1

1

0

0

0

0

0

0

Figure 96: Construction of the immediate value of the operation based on
the imm-field of the instruction for the different types of instructions. The
numbers above the box are the bit numbers of the immediate value used in
the operation and the numbers inside the box are the bit numbers of the
instruction’s imm-field (except when written ’0’, in which case the bit value
is zero).

.data

inputbuffer: .space 100

prompt: .asciz "Expression: "

errormessage: .asciz "Error in expression"

.text

main:

getexpressionstring:

la a0 prompt

li a7 4

ecall

la a0 inputbuffer

li a1 100

li a7 8

10.12. RARS: EVOLUTION OF MARS 247

ecall # read operation string

getfirstoperand:

call strtoint # extract first operand

mv a2 a1

call skipspaces

getoperator:

lb a3 (a0) # operator: + - * / %

addi a0 a0 1

call skipspaces

getsecondoperand:

call strtoint # extract second operand

now we have

a1: first operand int

a2: second operand int

a3: operation char

call performoperation

beqz a0 printresult

printerror:

li a7 4 # print string

la a0 errormessage

ecall

j endprog

printresult:

li a7 1 # print int

mv a0 a1

ecall

endprog:

li a7, 10

ecall

#--------------------- FUNCTIONS -------------------------#

performoperation:

##

PERFORM OPERATION

input:

a1, a2: operands

a3: operator

output:

a1: result

a0: 0 if no error

##

li t1 0 # default: no error

li t0 ’+’

bne a3 t0 notplus

add a1 a1 a2

j exitoperation

notplus:

li t0 ’-’

248CHAPTER 10. MARS: MIPS ASSEMBLY LANGUAGE IMPLEMENTATION

bne a3 t0 notminus

sub a1 a1 a2

j exitoperation

notminus:

li t0 ’*’

bne a3 t0 nottimes

mul a1 a1 a2

j exitoperation

nottimes:

li t0 ’/’

bne a3 t0 notdiv

div a1 a2 a1

j exitoperation

notdiv:

li t0 ’%’

bne a3 t0 nothing

rem a1 a2 a1

j exitoperation

nothing:

li t1 -1 # error

exitoperation:

mv a0 t1

ret

strtoint:

##

CONVERT STRING TO INT

input:

a0: string address

output:

a1: int

a0: address of first non-digit char

##

mv a1 zero # result

li t1 10

li t2 1 # sign

lb t0 (a0) # digit

li t3 ’-’

bne t0 t3 startconvert

addi a0 a0 1

li t2 -1

startconvert:

lb t0 (a0)

addi t0 t0 -48 # subtract ’0’ from char. ’0’ --> 0, etc,

bltz t0 endconvert # if < 0

bge t0 t1 endconvert # if >= 10

mul a1 a1 t1 # a1 *= 10

add a1 a1 t0 # a1 += t0

addi a0 a0 1 # a0++

j startconvert

endconvert:

mul a1 a1 t2 # multiply by sign

ret

10.12. RARS: EVOLUTION OF MARS 249

skipspaces:

##

SKIP SPACES

input:

a0: string address

output:

a0: address of first non-space char

##

li t1 ’ ’ # space

skiploadchar:

lb t0 (a0)

bne t0 t1 exitskipspaces

addi a0 a0 1

j skiploadchar

exitskipspaces:

ret

Output:

Expression: -28 * 4

-112

-- program is finished running (0) --

11| Examples of architec-

tures

We can now take a look at some particular architectures. How they fit in
the chronology of computer engineering. What makes them different from
the others? This is limited to architectures based on electronics, with the
exception of the first one. Generally speaking an architecture is described
by the following aspects:

• Underlying technology. For instance, the Difference Engine of Bab-
bage is based on mechanical columns to store decimal numbers. The
Intel 4004 is based on MOS-FET (CMOS) random logic based on BCD
calculations.

• Operand/register size (ALU). E.g. adding 8-bit data.

• Operator size/instruction size. E.g. 16-bit instruction register.

• Data bus size. E.g. 16-bit data bus.

• Address bus size. (E.g. 32 bit address → 232 addresses). The ad-
dressable memory space depends on this address bus size and the data
distance in memory (for instance 1 byte, then giving 232 byte = 4 GB
memory space).

• Clock frequency (both internal as well as the bus).

• Number of possible instructions. Viz. RISC vs. CISC.

• Number of pins of the CPU.

• Memory organization. Viz. Von Neumann vs. Harvard. Stacks and
heaps, etc.

• Number of registers.

251

252 CHAPTER 11. EXAMPLES OF ARCHITECTURES

• CPU/ALU implementation, microcode or random logic.

• Advanced features.

• Year of development.

• Number of transistors.

• Transistor size. Also called minimum feature size (MFS).

Let’s take a look at some famous and important architectures.

11.1 Difference Engine of Charles Babbage

The Difference Engine of Charles Babbage was invented – or developed –
at the end of the 18th century and built by Babbage in 1819-1822 and
can really be called revolutionary. It was a mechanical computer made of
vertical cylinders (see Fig. 16) and was designed to calculate polynomials
(and thus any function, as we have seen with Taylor-expansions). Each
cylinder containing/storing a single decimal digit . Execution consisted of
adding the value of column n + 1 to column n. The name comes from
calculating differences. This is best explained with an example. Imagine we
want to calculate p(x) = 2x2 − 3x + 2 for integer values, for instance for
x = 4. We reset it with the seed values at x = 0. We store:

• Cylinder 0: the value (2) at x = 0

• Cylinder 1: the difference (−1) between the cylinder-0 value at x = 0
and x = 1

• Cylinder 2: the difference (4) between cylinder-1 values at x = 0 and
x = 1

• Cylinder 3: the difference (0) between cylinder-2 values at x = 0 and
x = 1

All other cylinders start with 0. Generally speaking: we store the differences

(hence Difference Engine) and differences of differences between cylinder
values at x = 0 and x = 1. The starting state is thus:

Cyl0 Cyl1 Cyl2 Cyl3
x p(x) ∆p(x) ∆2p(x) ∆3p(x)
0 2 −1 4 0

Now we let it ’run’. Cyl1 will be added to Cyl0 resulting in Cyl0 being
1. Then Cyl2 is added to Cyl1, it becoming 3, and Cyl3 is added to Cyl2,
staying 4. We thus have these steps, with the active cylinders indicated at
each step:

11.2. INTEL 4004 253

Cyl0 Cyl1 Cyl2 Cyl3
x p(x) ∆p(x) ∆2p(x) ∆3p(x)
0 2 −1 4 0

0 1 −1 4 0

0 1 3 4 0

1 1 3 4 0

The last cylinder (first zero) was activated and thus we now have a value for
x = 1, namely 1. Let’s let it run some more iterations:

Cyl0 Cyl1 Cyl2 Cyl3
x p(x) ∆p(x) ∆2p(x) ∆3p(x)

1 4 3 4 0

1 4 7 4 0

2 4 7 4 0

2 11 7 4 0

2 11 11 4 0

3 11 11 4 0

3 22 11 4 0

3 22 15 4 0

4 22 15 4 0

Thus we know that p(4) = 22. And that done on a mechanical computer!
So, the Difference Engine can do polynomial calculations. Many functions
can be converted into polynomials. And we can use a convention that the
integers in the cylinders are scaled, for instance by a factor 100, so that
34 in fact represents 0.34. Any function can be calculated to any precision
when given enough time. What used to be a tedious job of calculating
manually tables of functions – entire halls were filled with (mostly) women
doing pen-and-paper calculations all day all their lives – could now be done
mechanically.

11.2 Intel 4004

The Intel 4004 was developed in 1971 by Intel for Busicom and can be
considered the first CPU with all features on board a single chip. (Don’t
forget, electronic calculators already existed before). It was based on MOS-
FET CMOS technology and it implemented the operations by random logic
instead of using micro-code.

The single chip was very small compared to modern CPUs. It had only
16 pins (DIL, dual in-line package, see Figure 97) compared to modern CPUs
that have about 500 pins. This was, however, the starting point of the entire
Intel architecture that most computers still use today.

254 CHAPTER 11. EXAMPLES OF ARCHITECTURES

V��R�� ��RL

R����

DA�A������ C !! V��
{

CL��O
�S"�#

ADDR��R$%

����

1&

9

1

8

Figure 97: Left: DIL chip of an Intel 4004. (Wikipedia) Right: pin-out of
chip.

Some specifications:

• Random logic.

• 4-pin external data bus to memory chips.

• 12 bit address, together with 8-bit address distance gives 212 = 4096
bytes memory space.

• Clock: 740 kHz.

• 2300 transistors with 10 µm MFS. An area of one of the Intel 4004
transistors can, with modern AMD Ryzen technology, contain about 1
million modern transistors, or, in other words, about 4 thousand entire
Intel 4004 processors!

• Data: binary-coded decimal (BCD).

• Von Neumann memory architecture, and program separated from data
in memory.

• Instruction set: 46 instructions, with 8 bit or 16 bit size. We thus have
variable-length instruction set

• Registers:

– 16×4 bit data

– Instruction register: 8 bit

– Program counter: 12 bit

– Stack registers: 12 bit. Up to 3 levels only

– Accumulator: 4 bit. To store temporary results

– Flags register

11.2. INTEL 4004 255

– Temporary register.

• 4-bit internal data bus.

For more details, see the datasheet ”4004 single chip 4-bit p-channel
microprocessor” from Intel. The 4004 chip worked together with a 4001
ROM, a 4002 RAM and a 4003 shift register. Together they were the MCS-
4 ’chip set’ (a word we still use today to describe the basic chips on a
motherboard).

The 4004 instruction set is variable-instruction-size. Most instructions
(see Appendix A) are 8-bit (1 byte) but some are 16-bit (2 byte) long. An
example of an 8-bit instruction is fetch-indirect, FIN (0011) with the next
nibble containing the 3 bits specifying the register pair that contains the
address of the data and a 0. So the full instruction is:

Assembly: FIN {R,R+1}

Binary: 0011 RRR0

with RRR specifying the register pair. For instance, using registers 2 and 3
would be FIN 0010 and thus 0011 0010.

Another 8-bit example: Adding the contents of register R to the accumu-
lator:

Assembly: ADD R

Binary: 1000 RRRR

with RRRR specifying the register. For example, adding: ALU + register 4
→ ALU is ADD 0100 and thus 1000 0100.

A 16-bit instruction is fetch immediate (FIM, 0010) that copies the 8-bit
value D to register pair {R,R+1}

Assembly: FIM {R,R+1} D

Binary: 0010 RRR0 DDDD DDDD

Note that there are no multiplication or division instructions. But, as
we have seen in this book, divisions and multiplications are done by shift-
mask-and subtract/add. In the 4004 instruction set there is also no masking
instruction, nor any shift. However, the rotate-right (RAR, see Figure 99)
and rotate-left (RAL) put the bit that was shifted out of the register into the
carry bit. This carry bit can then be read and the adding of the operand
performed if necessary (see the Russian-peasant algorithm).

Successors to the 4004 were (chronologically): Intel 4040→ 8008→ 8080
→ 8085 → 8088 → 8086 → x86 family.

256
C

H
A

P
T

E
R

1
1
.

E
X

A
M

P
L
E

S
O

F
A

R
C

H
IT

E
C

T
U

R
E

S

ROM

CONTROL

RAM

CONTROL TEST

TIMING

AND

CONTROL

SYNC CLOCKS

POWER

SUPPLIES

-10 V

+5V

ACCUMULATOR TEMP REG

FLAG

FLIP FLOPS

ARITHMETIC

LOGIC

UNIT

INSTRUCTION

DECODER

AND

MACHINE

CYCLE

ENCODING

INSTRUCTION

REGISTER

DATA BUS

BUFFER

STACK

MULTIPLEXER
REGISTER

MUX

PROGRAM COUNTER

LEVEL NO. 1

LEVEL NO. 2

LEVEL NO. 3

(4 BIT)

INTERNAL DATA BUS
(4 BIT)

INTERNAL DATA BUS

ADDRESS

STACK

SCRATCH

PAD

(ALU)

(4) (4)

(4)

DECIMAL

ADJUST

(8)

(12)

(12)

(12)

(12)

S
T
A

C
K

 P
O

IN
T
E
R

IN
D

E
X

 R
E
G

 S
E
L
E
C

T

(4) (4)

(4)(4)

(4) (4)

(4) (4)

(4)

(4)

(4)

(4) (4)

(4)

(4)

(4)

0 1

2 3

4 5

6 7

8 9

10 11

12 13

14 15

RESET

BIDIRECTIONAL

DATA BUS
D0..D3

φ2φ1SYNCRAM

CONTROL

TESTCM ROM

F
ig

u
re

9
8
:

T
h
e

In
tel

4
0
0
4

arch
itectu

re
(red

raw
n

fro
m

th
e

In
tel

4
0
0
4

d
atash

eet).
T

h
e

th
ick

arrow
s

are
th

e
d
ata

b
u
s.

T
h
e

th
in

arrow
s

are
th

e
co

n
tro

l
lin

es.
T

h
e

reg
ister

sizes
are

in
d
icated

in
p
aren

th
eses.

a
c
c
u

m
u
la

to
r

c
a
rry

'A'

F
ig

u
re

9
9
:

T
h
e

In
tel

4
0
0
4

in
stru

ctio
n

’ro
tate-rig

h
t

th
ro

u
g
h

carry’
(R
A
R
)

ro
tates

th
e

4
b
its

o
f
th

e
accu

m
u
lator

an
d

th
e

carry.

11.3. MOS 65XX 257

Figure 100: MOS 6502 40-pin-DIL chip. (Wikipedia).

11.3 MOS 65xx

The MOS 6502 was designed by the team of Chuck Peddle. The idea was to
make an ultra-cheap CPU. Compare the price of $20 to the competitor 6800
of Motorola: $700 (1975). It became a breakthrough in personal computer
market: Apple, Apple II, Commodore C=64, Nintendo, Atari, BBC Micro,
etc. (And Terminator T800; 6502 code appears on the head-up display of
the Terminator robot from the famous movies).

Some specifications:

• 3510 transistors on 5×5 mm2.

• 40 pin DIL.

• 4 MHz clock frequency.

• Few registers:

– Program counter, PC (16 bit)

– Accumulator, A (8 bit)

– X, Y registers (8 bit)

– Status register (8 bit): N=negative, V=overflow, 1, B=break,
D=decimal mode, I=IRQ disable, Z=zero, C=carry

– Instruction register

– Stack pointer (8 bit).

• 16-bit address bus, address distance 8 bit: 216 × 8 = 64 kB address
space.

• 8-bit data bus and registers (A, X, Y).

• No tri-state bus technology.

• Rudimentary pipelining: The last clock cycle of an instruction already
fetching a new instruction.

The 6502 has few registers (only X and Y), but used a hardware trick.
At the time memory was as fast as CPU registers. The 6502 used so-called
zero-page addressing. Most 65xx operations have such variants. When this
addressing mode is used, the next byte (8 bit) in the program code is the

258 CHAPTER 11. EXAMPLES OF ARCHITECTURES

address in the first page (’zero page’) of memory containing the operand or
destination. With 8 bits we can address 28 = 256 addresses. So, effectively
there are 256 registers. Of course, the code is slower, because another byte
has to be fetched from memory. Note that it thus also means the processor
uses variable-length instructions.

In total there are 16 addressing modes, see Appendix B. Some examples:

• implied: for instance INX (increase X register by one).

• immediate: the operand is simply the next byte in the code segment
at PC+1.

• absolute: the operand is at the address given by the next two bytes
in the code segment, least significant byte first.

• accumulator: the operand is in the accumulator.

• stack: the operand is at the address pointed at by the stack pointer.

• zero page: the operand is at address given by the next byte of code.

• absolute indexed: the operand is at the address given by the next
two bytes of code (LSB first) plus the value of the the register (X or
Y).

• absolute indirect: the operand is at the address at the address given
by the next two bytes of code (LSB first).

• absolute indexed indirect: the operand is at the address at the
address given by the next two bytes of code (LSB first) plus the value
of the the register (X or Y).

As can be seen from the addressing modes, instructions have different
lengths: 1, 2 or 3 bytes. There is therefore no classic instruction register! In
total there are 70 instructions, see Appendix B. Each with several addressing
modes. Nearly all of the (28 = 256) possible opcodes were used. It is still
RISC technology.

As an example, a jump to address 0xFF00, absolute addressing, would
be ($ means hexadecimal in 65xx Assembly)

assembly: JMP a, $FF, $00

16-bit address words are Little-Endian, lo(w)-byte first, followed by the
hi(gh)-byte. (An assembler will use a human readable, Big-Endian nota-
tion as in HHLL). We find in a the instruction-set table that JMP a is 0x4C,
so the hexadecimal machine language code becomes

4C 00 FF

11.3. MOS 65XX 259

or in binary

0100 1100 0000 0000 1111 1111

The 6510 was an evolution of the 6502 in that it had a built-in I/O port.
It was used in the famous Commodore 64, until today still the most-sold
computer in the world.

If we look at the instruction set (Appendix B) we can write a 6502
Assembly program writing ”Hello world!”. Here is a program for the 6502
Macroassembler & Simulator of Michal Kowalski available on-line

; ---;

; Writes "Hello, World!" in MOS 6502 ;

; Runs in the Coldfire Windows 95 6502 Emulator and ;

; Simulator of Michal Kowalski, available at ;

; http://exifpro.com/utils.html ;

; ---;

*= $0600 ; start address of code segment

; assembler definitions:

IOputchar = $E001

IOsetcursorX = $E005

IOsetcursorY = $E006

ASCII_CR = $0D

ASCII_LF = $0A

; code segment:

; Set cursor at (0,0):

LDA #0

STA IOsetcursorX

LDA #0

STA IOsetcursorY

LDX #0

printchar:

LDA hellow,x ; load char hellow[x] into A

BEQ done ; if char=0 then goto done

STA IOputchar ; print char

INX ; increase X

JMP printchar ; goto printchar

done:

BRK ; terminate program

; data segment:

hellow:

.BYTE "Hello world!", ASCII_CR, ASCII_LF, $00

The assembler creates the following label look-up table:

260 CHAPTER 11. EXAMPLES OF ARCHITECTURES

IOputchar = $E001

IOsetcursorX = $E005

IOsetcursorY = $E006

printchar = $060C

done = $0618

hellow = $061A

So that the final program would be assembled into

<code segment>:

LDA #0 : A9 00

STA IOsetcursorX : 8D 05 E0

LDA #0 : A9 00

STA IOsetcursorY : 8D 06 E0

LDX #0 : A2 00

LDA hellow,x : BD 1A 06

BEQ done : F0 07

STA IOputchar : 8D 01 E0

INX : E8

JMP printchar : 4C 0C 06

BRK : 00 00

<data segment>:

"hello " : 48 65 6C 6C 6F 20

"world!" : 77 6F 72 6C 64 21

CR LF 0 : 0D 0A 00

Thus

$0600: A9 00 8D 05 E0 A9 00 8D

$0608: 06 A2 00 BD 1A 06 F0 07

$0610: 8D 01 E0 E8 4C 0C 06 00

$0618: 00 48 65 6C 6C 6F 20 77

$0620: 6F 72 6C 64 21 0D 0A 00

Output:

Hello world!

139

Let’s do something a little more complicated, in which we can also see the
power of zero-page addressing mode. The program below again writes ”Hello
world!” to the screen, but now in a function call. Because MOS 65xx is an
8-bit architecture (registers are 8-bit) the address to the function cannot be
stored in a register. Instead, it is passed to the function in the zero-page
dual address {$01,$00}. In the loop zero page indexed addressing is used (for
some reason the assembler does not accept X as index, so Y is used instead).
Note also the convention used for labels. Those available for users calling

11.3. MOS 65XX 261

the function start with a normal letter. Those that are ’internal’ and not
available to – or should not be used by – the users start with an underscore
_. The program also has a routine for printing an integer. Analyze the code
and try to understand it.

; ---;

; MOS 6502 Assembly. Prints a string and an integer ;

; using functions ;

; Runs in the Coldfire Windows 95 6502 Emulator and ;

; Simulator of Michal Kowalski, available at ;

; http://exifpro.com/utils.html ;

; ---;

*= $0600 ; start address of code segment

; assembler definitions:

ASCII_CR = $0D

ASCII_LF = $0A

; code segment:

LDA #<hellow ; get lo byte of address

STA $00 ; store in zero page

LDA #>hellow ; get hi byte of address

STA $01 ; store in zero page

JSR printstr ; jump to subroutine

LDA #139

JSR printint

BRK ; terminate program

; data segment:

hellow:

.BYTE "Hello world!", ASCII_CR, ASCII_LF, $00

;------------ FUNCTIONS : ----------------

printstr:

;------------------------

; ($01,$00): address of null-terminated string

;------------------------

; assembler definitions:

IOputchar = $E001

LDY #0

_loopstr:

LDA ($00),Y ; load char address[y] into A

BEQ _donestr ; if char=0 then goto done

STA IOputchar ; print char

INY ; increase Y

JMP _loopstr ; goto _loopstr

_donestr:

RTS ; exit subroutine

262 CHAPTER 11. EXAMPLES OF ARCHITECTURES

printint:

;------------------------

; A: value to print

;------------------------

LDX #$FF

SEC

_loop100:

INX

SBC #100

BCS _loop100

ADC #100

JSR _printdigit

LDX #$FF

SEC

_loop10:

INX

SBC #10

BCS _loop10

ADC #10

JSR _printdigit

T% ORA #48; ASCII ’0’

STA IOputchar

PLA

RTS

;---------- end of functions : ----------

Output:

Hello world!

139

Finally, instead of emulating a processor and writing assembly code for it,
we can also emulate an entire machine, including the processor, BIOS (ker-
nel) routines, interfaces and peripheral equipment and run a normal program
designed for that computer in that emulator. For the MOS 6510 there exists
a very good emulator, called Vice. This emulates a Commodore 64 (or sim-
ilar computers from the same Commodore 65xx family). In Linux it can be
installed from the Software Manager. The Vice emulator comes without the
ROM/kernal routines (note the kernel for the Commodore was for some rea-
son called ’kernal’). That is because these routines are still copyrighted and
we have to get them separately. Fortunately they are readily available online
(at the moment of writing this, the archive is called vice-1.5-roms.tar.gz)
and contain all code needed: ROM/kernal routines to operate the cassette,
disk and I/O. It should be copied to directory /usr/lib/vice, after which
Vice should start smoothly.

Software disks (files with extension .d64) can then be found online at

https://commodore.software

11.3. MOS 65XX 263

There exist many assemblers for the C=64, but to be able to use it, one also
needs a manual with the instructions how to use it, or it would be stabbing
in the dark. One assembler that has this requisition is Merlin 64 for which
a book by Glen Bredon can be found too (Roger Wagner Publishing Inc.).

It is important to note that, although the processor for which the assem-
blers are written might be the same, assemblers can have different syntax.
The assembly language can be different and in the worst case even have dif-
ferent mnemonics. Yet, the machine code it generates is equal. For instance,
comment can in some languages be written by a semicolon, others by %, oth-
ers by a (double) slash, others by asterisk. It depends on the preferences
of the people that wrote the assembler. With that in mind, we can take a
look at a Merlin 64 Assembly program for the Commodore 64 and see the
syntax is different from the one above. See the example in Figure 101. We
enter the editor/assembler by typing ’E’ and then ’A’ for writing code. We
can start writing our source code here, starting with the comment *HELLO

WORLD. Some observations:

• Lines are numbered (these numbers are not part of the code, but only
shown for convenience). A code line starting with an ’*’ is considered
comment. Text on a line after any ’;’ is ignored too.

• The code has three columns: label, mnemonic, operand.

• A mnemonic ORG tells the assembler what is the starting address for
the assembled machine code program.

• The mnemonic EQU is an assembler directive like ’define’. When the
label defined like this is encountered in the source code, it is substituted
by the Merlin assembler by the value (in the operand column).

• A mnemonic TXT means the operand is ASCII text (for example, ’A’
will be translated into hexadecimal 41), HEX means it is a hexadecimal
value (without the need to specify $).

• # means immediate, $ means a hexadecimal value, % means a binary
value.

*HELLO WORLD IN MERLIN 6510 ASSEMBLY COMMODORE 64

ORG $8000 ; start of code segment

CHROUT EQU $FFD2 ; assembler directives

SETCUR EQU $FFF0 ; equivalence

BRDCOL EQU $D020 ;

LDA #1 ; load-imm 1 into reg A

STA BRDCOL ; store A into addr

LDX #0 ; load-imm 0 into reg X

LDY #0 ; load-imm 0 into reg Y

CLC ; clear carry

264 CHAPTER 11. EXAMPLES OF ARCHITECTURES

Table XXXI: Steps for the C=64 Merlin Assembly example of Fig. 101. See
Table XXXII for Merlin commands.

Load VICE
Install ROMS (in directory /usr/lib/vice/)
Attach disk merlin64_assembler.d64 to drive 8 (drive type 1540 II)
LOAD "*",8

RUN

(starts gray Merlin screen after a while)
%E

(enters editor)
:A

(add code)
Write program source code of Figure 101
On empty line type RETURN, exits editing
:ASM

answer "n" to question if you want to update source
:MON

(enters monitor)
$8000l

(last char is ’el’, not ’one’. lists program in memory at $8000)
$8000g

(runs the program starting at $8000)
Admire the beautiful text Hello world! on the top left of your screen
$q

(quits editor/monitor)

JSR SETCUR ; call subr. SETCUR

LDX #0 ; reset reg X

LOOP LDA DATA,X ; A <-- M[DATA+X]

BEQ DONE ; if 0 then goto DONE

JSR CHROUT ; call subr. CHROUT

INX ; x++

JMP LOOP ; goto LOOP

DONE RTS ; return to system

DATA TXT ’Hello’ ; data segment ...

HEX 20

TXT ’world!’

HEX 00

The steps to write and compile C=64 Merlin Assembly are given in Table
XXXI. The program does three things: First it sets the border color to white
by copying 1 to kernal address $D020. Then it sets the cursor to the top

11.3. MOS 65XX 265

Figure 101: A 6510 Assembly program writing ”Hello world!” on the
Vice Commodore 64 emulator running the Merlin 64 assembler environment.
Second panel: program in memory. Third panel: state of the screen after
running the program.

266 CHAPTER 11. EXAMPLES OF ARCHITECTURES

Table XXXII: C=64 Merlin Assembler commands

Environment Prompt Command Meaning
Disk % L Load source file

S Save source file
E Editor/assembler
X Disk command

Editor : A Add code
L List
D# Delete line
I# Insert before line
E# Edit line
ASM Assemble

Monitor $ <addr>l List memory
<addr>g Run at address

left of the screen by a call to kernal subroutine at $FFF0 with registers X

and Y equal to 0 and the carry flag cleared by CLC (carry flag set would
read the cursor position instead of setting it). And then it prints, in a loop,
character by character a text ”Hello world!” (each printed through a kernal
subroutine at $FFD2 until the string-terminator null is found). After the
program finishes (DONE RTS at line 18) control is returned to the system,
the Merlin assembler monitor in this case, and the $ prompt and cursor �

reappear. (Third panel of Fig. 101).

11.4 Atmel AVR

AVR is a typical example of a micro-controller unit (MCU). They are char-
acterized by a simple and small design, low specifications, but therefore very
cheap, and specialized in signal acquisition and processing and rudimentary
processing. These are the typical controllers in consumer electronics (wash-
ing machines, etc.). The AVR Atmel is used in the famous Arduino series,
which is the reason why it is presented here. The chip comes in various
packages ranging from dual-inline (DIL) to surface-mounted device (SMD),
various memory sizes and clock speeds.

An example is the ATmega32 (32 kB memory) shown in Figure 102. As
you can see, the µ processor is a full machine in that it has everything that
is needed on-board. A description can be done on basis of the pins:

• Internal memory only, so there are no data pins or address pin, as
there is no external data bus or address bus.

11.4. ATMEL AVR 267

Figure 102: ATmega32 pinout. (Wikipedia).

• Digital input/output pins (24): PB0. . . PB7, PC0. . . PC7 and PD0. . . PD7
to which digital signals (0/1) can be connected. These can either be
sensors or actuators because each can independently be configured for
input or output.

• Some of the digital pins have special purpose too. For example PD0

and PD1, they serve as a (pseudo)RS232 serial communications port*:
receive (RXD) and transmit (TXD). These are also used to upload the
code to the internal memory.

• The digital pins are accessible through overlay techniques, as part of
register memory (see below).

• Analog pins: These are input only (10-bit ADC, analog-to-digital-
converter). They convert an input voltage into a number in the range
from 0 (0 volt) to 1023 (VCC or AREF).

• – VCC and GND: power supply

– XTAL1 and XTAL2: connections for an external quartz crystal to
define the clock frequency

– RESET: (not) reset

– AREF: reference voltage for ADCs (defining the 1023 value)

– AVCC: power supply for ADCs.

*Pseudo-RS232 because the logic levels are 0 and +5 V instead of the RS232 levels of
+12 V and −12 V respectively

268 CHAPTER 11. EXAMPLES OF ARCHITECTURES

The architecture is 8 bit (registers and internal data bus). The instruc-
tion set is RISC with the AVR Assembly having about 100 different instruc-
tions. And it is running on a relatively low frequency, of the order of 1
MHz.

The unconventional novelty in the Atmel architecture is that it has sev-
eral types of memory that moreover use overlay techniques (see the section
on overlays in Chapter 7). The main memory is logically made up of

• 32 8-bit registers for general purpose, which resemble a little the zero-
paging technique of the MOS 65xx processor.

• 64 I/O lines, including the PB0. . . PB7, PC0. . . PC7 and PD0. . . PD7. Writ-
ing to and reading from these memory addresses is equal to getting
access to the outside world by overlay techniques.

• 2 kB of SRAM (like normal RAM, but static and not dynamic).

• Registers, I/O space and SRAM form a continuous memory space.
Addresses from 0x0000 to 0x085F.

• Flash memory: This is like a conventional (but built in) hard disk (of
typically 32 kB). In this memory segment the addressing distance is 16
bit (2 bytes); A 32 kB disk has 16 kW (kiloword) size. The program
resides in this part of the memory. It is not erased on power cycles.

• On top of it there is EEPROM memory (typically some kB), accessi-
ble through 4 memory addresses in I/O space, two for the EEPROM
address, one for the EEPROM data, and one for a read or write strobe
that synchronizes I/O memory data with EEPROM memory data.
This memory is also not erased by power-off and typically stores the
’settings’ of the equipment. For example whether we want centigrade
(oC) or fahrenheit (oF) on our thermometer.

• The program counter points to an address in flash memory. Flash
stores only one program. The addresses are from 0 to 16 k, so 14 bits
address from 0x0000 to 0x3FFF.

• A status register:

I T H S V N Z C

C: carry S: sign
Z: zero H: half-bit carry
N: negative T: test
V: overflow I: interrupt.

• 13 different addressing modes, addressing to 8-bit data memory or
16-bit program memory.

11.4. ATMEL AVR 269

8 ()*0+0000
0+00,-
0+00/0

0+002-
0+0030

0+082-

general purpose

re4)5*e65 7:/;

I<= 5>@Je 73L;

MNPQ 7/ TU;A

XY
Z[
\Z]
^_Y
ZY
`

Program memory7-a@5b NPQ;,3 ()* 0+0000

0+:---

c@*@ dedf6g

Figure 103: Atmel memory organization.

Figure 104: Arduino Uno using an AVR processor; the LED used in the
blink example indicated. (Adapted from an image at Wikipedia).

• Although still RISC, the instruction set is large and can be found in
Appendix C. Noteworthy are stack instructions (POP and PUSH), I/O
instructions (IN and OUT), and the absence of floating-point instruc-
tions. The reader is advised to download the AVR Instruction Set
Manual from Atmel, which is readily available on the internet.

Writing programs in AVR Assembly is a little more tricky, because the
AVR devices do not have a display to output data. However, we can show
here how it works, by reproducing the famous ’blink’ example of an Arduino.
Arduino is an excellent developers and teaching platform based on the AVR
micro-controllers, see Figure 104. Moreover, it is an open-source engineering
project and as such fully inline with the spirit of this book. If you are not
yet familiar with Arduino, try to get a hold of one.

Arduino has its own IDE where programs can be written and tested in

270 CHAPTER 11. EXAMPLES OF ARCHITECTURES

C++. The famous test-if-it-works, the equivalent of ’hello world’ in other
environments, is the blink example. It does nothing more than blinking
an onboard LED, connected to digital port 13 (In Figure 104 the LED is
indicated by ’L’, close to pin 13, pin 13 is directly wired to port B5 of the
Atmel processor). We are here going to write this same example in AVR
Assembly and upload it to the Arduino, without the help of the Arduino
IDE.

We first write our Assembly source code. It is shown here below:

;--;

; blink.asm ;

; blinks an LED which is connected to PB5 (Arduino pin 13) ;

;--;

; avra blink.asm

; avrdude -p atmega328p -c arduino -b 115200 -P /dev/ttyUSB0

; -U flash:w:blink.hex:i

;.include "m328Pdef.inc"

; or directly define:

.device ATmega328P

.equ PORTB = 0x05

.equ DDRB = 0x04

.equ PORTB5 = 5

setup:

ldi r16,0b00100000

out DDRB,r16 ; pin 5 of port B is output

loop:

sbi PORTB,PORTB5 ; set bit 5 of I/O port B

call delaycounter ; software delay

cbi PORTB,PORTB5 ; clear bit 5 of I/O port B

call delaycounter ; software delay

rjmp loop ; eternal loop

delaycounter:

ldi r29,0x20

ldi r30,0xFF

ldi r31,0xFF

delayloop:

dec r31

brne delayloop

dec r30

brne delayloop

dec r29

brne delayloop

ret

It works as follows: The first thing to do is to include the specifications
of the processor we are going to use. In this case an ATmega 328P, so we
include the definitions file for it, m328Pdef.inc. Constants, such as DDRB

used later, are now defined. Alternatively (as shown) we can directly define

11.4. ATMEL AVR 271

the relevant constants we are going to use by a couple of .equ assembler
directives.

The first real AVR Assembly instruction is ldi r16,0b00100000, which
means load-immediate the 8-bit binary value 00100000 into register r16.
The next instruction, out DDRB,r16, sets the direction – 0 is input, 1 is
output – of the digital ports B (pins 8 to 15 on the Arduino) by writing
this bit pattern in r16 to the overlay address of Port B. With only the third
bit set (sixth from the right), only B5 is output, the rest is input. The
next instruction, sbi PORTB,PORTB5, sets bit 5 of port B (to 1, meaning 5
volt). Thus, after this instruction, pin 13 of the Arduino is high (5 volt), and
through a shunt resistor current is supplied to the LED which thus lights
up.

We now have to wait for some time before switching it off again. In this
simple example we just call a routine (delaycounter) that implements a
software down counter and calculate how many cycles it needs to have the
desired delay before continuing. In this case, we used a down-counter from
0x20ffff, stored in three registers, r29, r30 and r31. After the counter
reaches zero, the function is exited (ret) and pin 5 of port B cleared which
switches off the LED. Another (equal) delay and an unconditional jump is
made to the beginning of the eternal loop. Each cycle of the software counter
takes two instructions (decrement register 31 and a branching instruction),
so on a 16 MHz processor the software delay takes in total 2×0x20ffff/(16
MHz) = 0.26 s. The blinking rate is thus about 2 Hz.

We now need to assemble our program and upload it to our AVR proces-
sor. For the assembler we can use the AVRA assembler of Ro5bert available
at the Software Manager of Linux, or on GitHub. After ’making’ the AVRA
project (make install) we can compile our AVR Assembly program with

avra blink.asm

If things go well it will respond with something like (an irrelevant warning
omitted here)

AVRA: advanced AVR macro assembler (version 1.4.2)

Pass 1...

Pass 2...

done

Assembly complete with no errors.

Segment usage:

Code : 19 words (38 bytes)

Data : 0 bytes

EEPROM : 0 bytes

Now we have an Intel Hexadecimal machine code file, blink.hex:

272 CHAPTER 11. EXAMPLES OF ARCHITECTURES

:020000020000FC

:1000000000E204B92D9A0E9409002D980E9409006F

:10001000F9CFFFEFEFEFD0E2FA95F1F7EA95E1F7CC

:06002000DA95D1F7089506

:00000001FF

This we have to upload to the AVR processor. A nice program is avrdude
(AVR Downloader/UploaDEr) of Brian S. Dean, available at nongnu.org.
Note that it is also part of the Arduino environment, so you may already
have it installed on your computer. If not, run the configure file, and check
if all dependencies are met (install those missing, esp. the -dev packages at
the Synaptic Packet manager).

The easiest way of finding out the exact command of uploading our
machine-code compiled program, however, is by using the Arduino environ-
ment and making sure we have enabled the ”verbose output during upload”
in the preferences. In that case we can just take the blink example (or any
other program) and upload it to an Arduino. The Arduino environment will
inform us of the command-line avrdude instruction. We can adapt it then
to our own hex-file and write something like
avrdude -p atmega328p -c arduino -b 115200 -P /dev/ttyUSB0

-U flash:w:blink.hex:i

It specifies the processor (atmega328p) and the bitrate of transfer (115200
baud), as well as the programmer type (arduino). If everything went well,
the LED is blinking at about 2 Hz. The frequency can be adjusted by
the value loaded in register r29 of the code. In case you do not have the
Arduino environment, but do have avrdude, other commands might work,
such as avrdude -p m328P -c stk500v1 -b 57600 -P /dev/ttyUSB0 -U

flash:w:blink.hex. It is a little more stabbing in the dark, though.

11.5 Intel x86

The x86 family of processors were all based on the 4004 series and is named
on basis of the 8086 processor and successors. It is part of a series: 4004
→ 4040 → 8008 → 8080 → 8085 → 8086 → 80286 → 80386 → 80486 →
Pentium. (They decided to start giving non-numerical names like Pentium
to the chips to be able to register it as a trademark; you cannot register a
number). They are made most famous by the IBM ’personal computer’ (PC)
series that also includes the AT and XT models. In principle the processors
in this series tried to keep backward compatibility – from the 8086 onwards
– meaning that the same compiled program would flawlessly run on a more-
recent processor. That is, of course, both its strength and its weakness.
Tricks have been used to achieve it.

It was designed by Intel, but other companies made compatible versions.

11.5. INTEL X86 273

Figure 105: Intel 8086 40-pin-DIL chip and pin-out. (Wikipedia).

AMD, Cyrix, etc. Sold first in 1978 with a 5-MHz clock and consisting
of 29,000 transistors in a 40-pin-DIL package. It is still the most used ar-
chitecture for personal computing, as in most modern desktop and laptop
computers.

Because this family of processors spans decades, the features evolved a
lot. But starting at:

• 16-bit registers.

• 16-bit data bus.

• 16-bit address bus, but later versions used memory segmentation to
add 4 bits to the address bus. (Today we still can talk of a segmentation
fault, when the computer completely messes up and we get a so-called
’blue screen of death’, BSOD). An address (offset) was used in the
code is 16 bit, but relative to a segment that was left-shifted 4 bits.
The final address was then the sum of the two. An example:

0110 1000 1000 0111 segment

0011 0100 1010 1001 offset

------------------------ +

0110 1011 1101 0001 1001 address

That leaves 220 address space (of 8 bits each) = 1 MB.

• 14 16-bit registers

274 CHAPTER 11. EXAMPLES OF ARCHITECTURES

– general purpose: AX, BX, CX, DX (also addressable half/byte: AH,
AL, etc.)

– SP: stack pointer, BP: base stack pointer

– SI, DI: address pointers

– IP: instruction pointer (program counter)

– CS: code segment. DS: data segment. ES: extra segment. SS: stack
segment

– Status register (carry, parity, auxiliary, zero, sign, trap, interrupt,
direction, overflow).

Later versions:

• The latest version has a 48 bit address bus (248 = 256 TB), 8 billion
transistors at 11 nm MFS, 4 GHz clock and more than 1000 pins.

• In 32-bit x86 architectures, the register names add an ’E’ in front, so
EAX, etc.

• In 64-bit x86 architectures, the register names add an ’R’ in front, so
RAX, etc.

• There existed 8087 co-processors (obsolete after 80486) implementing
IEEE 754 with 8 80-bit registers (extended format).

• Later: Protected mode (vs. real mode). Good for multiprocessing.
Prevents programs from corrupting one another (or even crash the
system; blue-screen of death cannot happen).

• MMX technology. It uses the x87 co-processor for integer processing
for graphics calculations. These are 64-bit integers in 80-bit registers
(if MSB 16 bit are set to 1 then it is NaN). This was made obsolete
by SSE technology. Streaming SIMD Extensions (SSE) is a single
instruction, multiple data (SIMD) instruction set extension.

• The 80586 was named ’Pentium’ because you cannot copyright-protect
a number.

x86 Assembly is a CISC architecture with a lot of instructions (about
1290) with a lot of addressing modes and variable instruction length (ranging
from 1 to 15 bytes). They are too numerous to mention all here, but some
deserve to be highlighted:

• Special stack instructions: push, pop, call, ret, enter, leave. Com-
pared to MIPS: call is like jal, ret is equivalent to jr $ra, while
enter and leave take care of pushing and popping registers to the
stack by creating and destroying a stack frame.

11.5. INTEL X86 275

• ALU instructions:

– arithmetic: add, sub, mul, idiv

– logic: and, or, xor, neg

– shift and rotate: sal, sar, shl, shr, rol, ror

– floating point is relative to stack: fadd st(0), st(1) is pop two
items from stack, add them and put result on stack
also: fsin, fcos, ftan, fatan, fexp, fyl2x (log2).

• data flow: mov.

• jump: unconditional: jump. conditional: jz, jnz, jl, jg, ja.

• flag: cmp.

• software interrupts: int.

Because the same architecture was used for many decades, and it evolved
from 16 bit to 64 bit, the register names are a little confusing. In 64-bit there
are 16 registers and they are called

R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 ... R15

RAX RCX RDX RBX RSP RBP RSI RDI

(The first 8 of the registers have alternate names written below). The lowest
32 bits of each register, or the same registers in older 32-bit technology, have
names like this:

R0D R1D R2D R3D R4D R5D R6D R7D R8D R9D ... R15D

EAX ECX EDX EBX ESP EBP ESI EDI

The lowest 16 bits of each register, or the same registers in older 16-bit
technology, have names like this:

R0W R1W R2W R3W R4W R5W R6W R7W R8W R9W ... R15W

AX CX DX BX SP BP SI DI

The lowest 8 bits of each register have names like this:

R0B R1B R2B R3B R4B R5B R6B R7B R8B R9B ... R15B

AL CL DL BL SPL BPL SIL DIL

The ’second byte’ (bits 8 to 15) of R0 to R3 are accessed through

AH CH DH BH

Addressing is done by square parenthesis. So the operand in the address-
ing

276 CHAPTER 11. EXAMPLES OF ARCHITECTURES

[rax-rdi*4]

is the contents of the address pointed to by register RAX with an offset of −4
times the contents of register RDI.

Numbers can be written as

300 decimal
300d decimal, d suffix
0d300 decimal, 0d prefix
06ch hexadecimal, h suffix
0x6c hexadecimal, 0x prefix
100q octal, q suffix
0q100 octal, 0q prefix
11000001b binary, b suffix
0b1100001 binary, 0b prefix

Let’s write some Assembly code for it. It can be done in many ways.
Assuming that your work computer is one based on the x86 architecture, you
do not need any emulator. Neither of the processor (as our MIPS emulator
in MARS), nor of the entire computer (as was done above for the MOS
6510 system the Commodore 64). You can directly run your program on
the computer, without emulation. Write a program in an assembly language
of choice, implemented by a specific assembler, and compile (assemble) the
program and run it. The instruction set of x86 is too big to show here; the
reader is advised to get a hold of the Intel document ”Intel® 64 and IA-32
Architectures Software Developer’s Manual Volume 2 (2A, 2B, 2C & 2D):
Instruction Set Reference, A-Z”.

Here is an example program of writing ”Hello world!” in early Microsoft
Macro Assembler (MASM) x86 language. In this, ’h’ is hexadecimal, ’;’
starts comment, ’db’ is data size byte (8-bit), 0x21 is the MS-DOS interrupt
for I/O (See Appendix E), among other things:

; --;

; Writes "Hello world!" to the console using ;

; MS-DOS interrupt 0x21. Runs on MS-DOS only. ;

; --;

section .data

msg db ’Hello world!$’; $-terminated string

section .text

start:

lea dx, msg ; load effective address

mov ah, 09h ; 0x09: write string to stdout

int 21h ; interrupt 0x21; DOS interrupt

mov ah, 4Ch ; 0x4C: terminate

int 21h

end start

11.5. INTEL X86 277

Since it is making use of an MS-DOS interrupt (0x21, see Appendix E),
MS-DOS must be loaded in memory. It will not run on other operating
systems running on this x86 hardware. For instance, on Linux, using int

0x21 will cause
Segmentation fault (core dumped)

This book will not delve much into the Microsoft operating system, for two
reasons. First because it is a closed platform and thus against the spirit
of stallinga.org. Moreover, by the time you read this, Microsoft Windows
will be history and converted into merely yet-another-Linux-distro where
all open-source and public-domain software will work, including the follow-
ing examples. A Linux version for interrupt-generated text output ”Hello
world!”, using specific Linux system calls (software interrupt 0x80; kernel
system call, see p. 304) is the following.

In Linux we can use NASM (Netwide Assembler) to assemble the program
and use 32-bit registers and interrupt 0x80. The following program will only

run in Linux x86 and will not run in Windows or MS-DOS even if it has
underlying x86 hardware!

; --;

; file: hello.asm ;

; Writes "Hello, World!" to the console using ;

; only interrupt 0x80. Runs on 64-bit Linux only. ;

; To assemble and run: ;

; nasm -felf64 hello.asm ;

; ld hello.o ;

; ./a.out ;

; --;

global _start

section .data

message: db "Hello, World!", 10 ; note the LF at the end

section .text

_start:

mov eax, 4 ; 4 = write string

mov ebx, 1 ; 1 = stdout

mov ecx, message ; address of string start

mov edx, 0xE ; length of string

int 0x80

mov eax, 1 ; 1 = exit

mov ebx, 0 ; exit code 0

int 0x80

Output:

278 CHAPTER 11. EXAMPLES OF ARCHITECTURES

Hello, World!

We could also use a more user-friendly syscall method, similar to what
we are used to in MIPS. See the example below. Note that the int 0x80

with eax equal to 4 in the example above becomes syscall with rax equal to
1; not only did we go from 32 to 64 bit architecture, but also the parameter
to place in ax changed from 4 to 1. Note also the different registers used in
passing the arguments of string address, string length, and output file:

; --;

; file: hello.asm ;

; Writes "Hello, World!" to the console using ;

; only system calls. Runs on 64-bit Linux only. ;

; To assemble and run: ;

; nasm -felf64 hello.asm ;

; ld hello.o ;

; ./a.out ;

; source: https://cs.lmu.edu/~ray/notes/nasmtutorial/ ;

; --;

global _start

section .text

_start: mov rsi, message ; address of string to output

mov rax, 1 ; system call for write

mov rdi, 1 ; file handle 1 is stdout

mov rdx, 0xD ; number of bytes

syscall ; invoke operating system to

; do the write

mov rax, 0x3C ; system call for exit

xor rdi, rdi ; exit code 0

syscall ; invoke operating system to exit

section .data

message: db "Hello World!", 10 ; note the LF at the end

Output:

Hello World!

Even more confusing, we could also use a different assembler with a dif-
ferent syntax to write the same code. Here is an as (the portable GNU
assembler) version of the int-0x80 program (code by Ciro Santilli on stack-
overflow):

11.5. INTEL X86 279

/***\

* file: hello.asm *

* Writes "Hello, World!" to the console using *

* interrupt 0x80. To assemble and run: *

* as -o hello.o hello.asm *

* ld hello.o *

* ./a.out *

***/

.data

s:

.ascii "hello world!\n"

len = . - s

.text

.global _start

_start:

movl $4, %eax /* write system call number */

movl $1, %ebx /* stdout */

movl $s, %ecx /* the data to print */

movl $len, %edx /* length of the buffer */

int $0x80

movl $1, %eax /* exit system call number */

movl $0, %ebx /* exit status */

int $0x80

Output:

hello world!

Note the different syntax for comment, the use of the $ sign, the 32-bit
movl instruction, the reverse order of source and destination operands, the
% symbol, the declaration of a string constant, and the determination of the
length of the string.

Another way of having an Assembly program generate output is by bor-
rowing functions from the C libraries. An example is the use of printf,
which has a further advantage that we can also print other quantities like
integers (syscall can only print strings). This is shown in the next example:

; --;

; file: print.asm ;

; Writes "Hello, World!" and "123" to the console :

; using external C-function printf. Runs on 64-bit ;

; Linux only. ;

; To assemble and run: ;

; nasm -felf64 print.asm ;

; gcc -no-pie print.o ;

; ./a.out ;

280 CHAPTER 11. EXAMPLES OF ARCHITECTURES

; --;

global main ; entry point for c-compiler

extern printf ; will be borrowed from c-library

; printf(char* format, <data>)

; printf(rdi, rsi)

section .text

main:

lea rdi, [rel message] ; "Hello, World!"

; no need for rsi

; or (alternative):

lea rdi, [rel fmts] ; "%s"

lea rsi, [rel message] ; "Hello World!"

mov al, 0 ; no SSE regs used

call printf

lea rdi, [rel fmti] ; "%d\n"

mov rsi, 123 ; int to print

mov al, 0 ; no SSE regs used

call printf

mov rax, 0x3C ; system call for exit

xor rdi, rdi ; exit code 0

syscall ; invoke operating system to exit

section .data

message: db "Hello, World!",10,0; don’t forget to terminate

fmti: db "%d",10,0 ; format for printing int

fmts: db "%s",0 ; format for printing string

Output:

Hello, World!

123

Note how now the gcc linker/compiler is used to generate the executable.
We also have to supply the C entry point main. We know how printf()

takes (at least) two arguments: a pointer to a string specifying the format,
and then the data to print. In Assembly they go to RDI and RSI respectively.
The actual printing is done by a call printf, which we borrow from the C
library and should thus be declared external by extern. Since for printing
”Hello World!” we need only the format string, we can do without RSI, or
we can specify string (%s) in the format RDI and supply the text in RSI.

We can also do the opposite, use Assembly inside our C-code. (Note
that the C code is then of course no longer independent on architecture
since it will use architecture specific instructions). The program below gives
an example.

11.5. INTEL X86 281

• We have to put every line of Assembly code inside an ’asm("...");’
construction.

• Global variables are on the heap, and accessible through a [.] refer-
ence (’contents of address’), while local variables and function argu-
ments are on the stack and accessible through the stack pointer rsp.
As an example, in the function foo, the integer i is the last item
placed on the stack and has size 4, so it is at address rsp-4 and its
value is [rsp-4]. Curiously, the integer x is at rsp-20 (one would
have expected it to be at rsp-8, the difference is likely due to memory
alignment).

• Return values, if any, have to be placed in rax.

/**

* file: asm.c *

* How to use in-line x86 Assembly in C *

* gcc -no-pie -masm=intel asm.c *

* ./a.out *

**/

#include <stdio.h>

int a, b; // global vars are on the heap

int foo(int x){ // arguments are on the stack

int i = 4; // local vars too

asm("mov rax, [rsp-20]"); // int x;

asm("mov rcx, [rsp-4]"); // int i;

asm("mul rcx"); // rax = i*x;

asm("mov rcx, [a]"); // global int a;

asm("mul rcx"); // rax = a*i*x;

asm("mov rcx, [b]"); // global int b;

asm("mul rcx"); // rax = b*a*i*x;

// return value is in rax

// stack adjusted by gcc and ’ret’ is added by gcc

}

void printstring(char *q){

asm("mov rsi, [rsp-8]"); // q*

asm("mov rax, 1");

asm("mov rdi, 1");

asm("mov rdx, 0xD");

asm("syscall");

// stack adjusted by gcc and ’ret’ is added by gcc

}

int main(int argc, char **argv){

char p[] = "Hello world!\n";

int y;

282 CHAPTER 11. EXAMPLES OF ARCHITECTURES

a = 10; b = 2;

y = foo(3);

printstring(p);

printf("foo return value: y = %d\n", y);

return 0;

}

Output:

Hello world!

foo return value: y = 240

The reader is suggested to read books such as Sivarama P. Dandamudi,
Guide to Assembly Language Programming in Linux (Springer, ISBN 978-
0387-25897-3), and Microsoft Macro Assembler Reference Manual Program-
mers Guide by Microsoft Corporation. There are not ready-made answers
to x86 assembly programming, since it is a very dynamic architecture and
things change rapidly. What is written today, tomorrow may no longer be
valid.

11.6 Advanced architectures: Quantum com-
puting and asynchronous (clockless) com-

puting

For the architectures above, specifically the electronic ones, the memory
and states are binary. That is, each memory element has two possible
states, which we can label ’0’ and ’1’ for convenience. For instance, in
TTL (transistor-transistor logic) a ’0’ is 0 volt and a ’1’ is 5 volt. In CMOS
the voltages may be different (3.3 volt), but invariable there are two states
to every bit of memory and the logic hardware processes these binary bits
of information.

Not so for quantum computing bits. The idea of quantum mechanics is
that a state is only defined once it is being measured, or ’observed’ as it is
called in jargon. It is not so that the state exists, but only is unknown to
us until we determine it. No, the state is not existing until observed. Or
better to say, it is in a state of superposition of all possible states until mea-
sured. At which moment the state ’collapses’ into the one remaining possible
state. Don’t worry if you think it is weird, or that you don’t understand
it. Even Feynman famously said ”If you think you understand quantum me-
chanics, you don’t understand quantum mechanics”. The reader is highly
recommended to watch his Character of Physical Nature lectures.

11.6. ADVANCED ARCHITECTURES: QUANTUM COMPUTING AND ASYNCHRONOUS

The basic ingredient of quantum computing is that a bit, when not ob-
served, is in a superposition of states, we call this a ’qubit’. Now the trick
in quantum computing is to process the bits before they collapse into the
final state. In this way, in contrast to a binary bit that can store only two
states, a qubit can store more than two states. So, imagine we have a quan-
tum AND-gate with two qubits. At the entrance of the AND-gate we have
four possible states, but they exist all at the same time, since they have not
collapsed yet.

We would simultaneously do calculations on all possible states! Imagine
a bit is related to the spin state of an electron in a magnetic field, ’0’ is
spin-up (↑), and ’1’ is spin-down (↓). One such bit would have two possible
states, we call these wave functions as a superposition of states, written in
bra-ket notation as

a = α| ↑> +β| ↓>, (1)

with the parameters α and β values between 0 and 1 representing the super-
position state, and with a sum α2 + β2 = 1. (Collapsing the wavefunction
would imply one of the parameters to become 1 and the other 0). Apply-
ing two of these wavefunctions, a1 and a2 to the qubit AND-gate results
in calculating simultaneously all results with all four possible entry ’values’
(superposition waves). It is obvious that the computing power rapidly be-
comes astronomical with the number of entry waves. With n bits we can do
2n calculations simultaneously. With a simple 100-qubit computer we can
do 2100 calculations simultaneously, which is about 1030. If we can do one
computing step per second, effectively we can do 1030 steps every second.
That is in terms of processing power 1020 10-GHz cores in parallel. This is
a tremendous potential.

The question still remains if it is feasible or not. With the advantages
of such a technique in nature directly obvious – imagine being able to cal-
culate the state of the universe for the next ten minutes ahead, including
the position and speed of the predator/prey – it is remarkable that the tech-
nique is not anywhere implemented in the animal kingdom. Note that other
quantum mechanics phenomena do exist in nature. No animal uses quan-
tum computing, even if it would make the species directly masters of the
universe. One might come to the conclusion that quantum computing is a
nice idea, and even possible to do in some way or another in a laboratory,
but not feasible and reliable in reality, or not feasible altogether.

❉

Another odd way of doing computing is with a clockless computer, in so-
called asynchronous computing. Remember that we introduced the clock in
our gated latch (see Figure 35 on page 91), and never went back to clockless
components. From that moment on, all our circuitry was based on synchro-
nized behavior of the components, with a clock as central synchronization
unit.

284 CHAPTER 11. EXAMPLES OF ARCHITECTURES

A human brain differs from modern computers in that it does not have
a clock to synchronize the logic circuits. Or in other words, the definition of
clockless computing: ”A digital logic architecture that does not use a central
timing clock to synchronize all the circuits in a chip. Called ’asynchronous
logic’, such an architecture eliminates approximately 15% of the chip’s cir-
cuits and 20% of its power requirement.” On top of that, computation can
be faster. Imagine the case of a ripple-carry adder adding two 32-bit num-
bers. In the worst case, it would take 32 clock cycles. And thus we have to
always wait 32 cycles for the output, even if the result is ready much earlier,
maybe after only two clock cycles. A clockless computer would not need to
wait the full 32 cycles, but would simply signal when ready. On average,
this can be much faster.

It is obvious why a human brain would do without a clock. Moreover, it
solves the two fundamental questions

• How did a brain evolve? If a clock is part of the brain, it must have
been there from day one. It cannot have been that it evolved without
a clock and then one day a clock was added to the architecture. A
clockless brain, on the other hand, is a natural smooth evolution from
mono-cellular entities.

• If a central clock is present, it leaves the brain and body vulnerable to
glitches in this clock. Imagine a slight brain injury that damaged the
clock, it would immediately kill the human.

It is thus obvious that a clockless architecture is the only real solution in na-
ture. Having said that, the human brain seems to have a ’natural frequency
of operation’, which is about 11 Hz. (Yes, eleven hertz). Epileptic people
can go into a fit when they are exposed to such frequencies, but even fully
healthy people are vulnerable to them.

Once a clock has been eliminated from the design, there is no need for a
control logic as well. Remember a Von Neumann architecture that is used
by all modern computers. A central processing unit, housing an ALU and
control logic, with the program and data stored externally on memory suf-
fers from a Von Neumann bottleneck, where the CPU has to communicate
the information over a bus to the memory, see Figure 58 on p. 126 for a clas-
sic Von Neumann computer architecture. A brain does not suffer from this
bottleneck, since each neuron and synapse with axons (see Fig. 106) is both
the processor as well as the memory. All is memory and all is processing.
Although the ’clock’ is slow, it is effectively a multi-core processor, with bil-
lions of computers working simultaneously, communicating asynchronously
with each-other. Calling it a multi-core is an understatement.

A human brain uses only about 20 watt of energy. It has about 100 billion
neurons (see Table XXXIII), but still it can perform most tasks much better
than the most advanced computer in the world, which at the moment of

11.6. ADVANCED ARCHITECTURES: QUANTUM COMPUTING AND ASYNCHRONOUS

synapse

nucleus

nucleus

synapse

hkon

neuron

to other

neuron

to other

neuron

Figure 106: Neurons communicating in a brain. All neurons/axons are both
memory and processing, thus overcoming the Von Neumann bottleneck of
communication.

Table XXXIII: Number of neurons in various species (source: verywellmind)

Species Number of neurons

Homo Sapiens 86 billion
Fruit fly 100 thousand
Mouse 75 million
Cat 250 million
Chimpanzee 7 billion
Elephant 257 billion

this writing is the Summit supercomputer used for scientific research with
specifications as in Table XXXIV, that uses 13 megawatt and has ’only’
about 40 thousand cores.

In computer science, clockless components are sometimes used and these
are called asynchronous circuits. Instead of a clock determining when data
are guaranteed stable at the output, the circuit uses signals that indicate
completion of instructions and operations, specified by simple data transfer
protocols. We also call these signals ’handshake’ and are often used in long
distance communication (’telecom’), where having the same clock signal on
both sides of the communication line – i.e., have the two sides synchro-
nized’ – is technically more complicated. Instead, the sending end asserts a
handshake signal ’data ready’ or ’request to send’ (see Figure 107), and the
receiving end replies with a handshake signal ’acknowledge’ when the data
is received. This acknowledge signal can then be used to trigger the next
generation of data by the sender.

286 CHAPTER 11. EXAMPLES OF ARCHITECTURES

Table XXXIV: Specifications of the Summit supercomputer

Item Spec

Architecture 9,216 POWER9 22-core CPUs
27,648 NVIDIA Tesla V100 GPUs

Operating System Red Hat Linux
Speed 200 petaFLOPS*
Storage 250 PB
Power 13 MW
Size 873 m2

Cables 219 km
Location Lawrence Livermore National

Laboratory, California
Price 325 M$
FLOPS: floating-point operations per second
image source: Wikipedia

sender receiver

data

rlmnlpq
rstuvwxlyzl

time

rlmnlpq
data

rstuvwxlyzl

Figure 107: Clockless computing. Components signal each-other when
data is ready and when it is received and the receiver is ready to receive
more data so that processing can continue.

11.6. ADVANCED ARCHITECTURES: QUANTUM COMPUTING AND ASYNCHRONOUS

❉

Now we come to the essential philosophical question: To what extent
are humans simply complicated computers? Alan Turing having thought
about that came up with a method to distinguish computers (robots) from
humans. This is his so-called Turing test, or imitation game. As Wikipedia
writes:

”Turing proposed that a human evaluator would judge natural lan-
guage conversations between a human and a machine designed to
generate human-like responses. The evaluator would be aware that
one of the two partners in conversation is a machine, and all par-
ticipants would be separated from one another. The conversation
would be limited to a text-only channel such as a computer key-
board and screen so the result would not depend on the machine’s
ability to render words as speech. If the evaluator cannot reliably
tell the machine from the human, the machine is said to have passed
the test. The test results do not depend on the machine’s ability
to give correct answers to questions, only how closely its answers
resemble those a human would give”.

It is very similar to the observation of Descartes:

”If there were machines which bore a resemblance to our bodies
and imitated our actions as closely as possible for all practical pur-
poses, we should still have two very certain means of recognizing
that they were not real men. The first is that they could never
use words, or put together signs, as we do in order to declare our
thoughts to others. For we can certainly conceive of a machine so
constructed that it utters words, and even utters words that cor-
respond to bodily actions causing a change in its organs. . . . But
it is not conceivable that such a machine should produce different
arrangements of words so as to give an appropriately meaningful
answer to whatever is said in its presence, as the dullest of men can
do. Secondly, even though some machines might do some things as
well as we do them, or perhaps even better, they would inevitably
fail in others, which would reveal that they are acting not from
understanding, but only from the disposition of their organs. For
whereas reason is a universal instrument, which can be used in
all kinds of situations, these organs need some particular action;
hence it is for all practical purposes impossible for a machine to
have enough different organs to make it act in all the contingencies
of life in the way in which our reason makes us act”. (Translation
by Robert Stoothoff).

Many attempts have been made to create human-like robots. A nice exam-
ple is ELIZA. This 1960s artificial intelligence program basically answered
every statement or question of the human with a question of itself, often

288 CHAPTER 11. EXAMPLES OF ARCHITECTURES

repeating the statement of the human and simply adding a question mark*:

> Hello, I am Eliza.

* hello

> How are you today.. What would you like to discuss?

* I feel happy

> Do you enjoy feeling happy?

* Sure, why not?

> What is it that you really want to know?

* I want to know who you are

> What if you never got to know who you are?

This, of course, is not real ’intelligence’, but rather a preprogrammed set
of rules. ”John Searle’s 1980 paper Minds, Brains, and Programs proposed
the ’Chinese room’ thought experiment and argued that the Turing test
could not be used to determine if a machine can think. Searle noted that
software (such as ELIZA) could pass the Turing test simply by manipulating
symbols of which they had no understanding. Without understanding, they
could not be described as ’thinking’ in the same sense people are. Therefore,
Searle concludes, the Turing test cannot prove that a machine can think.”
(Wikipedia).

Can there one day be a robot that is indistinguishable from humans?
Are such units already living among us?

*http://psych.fullerton.edu/mbirnbaum/psych101/Eliza.htm

A| Intel 4004 instruction

set

Instruction Mne- 1st 2nd
monic byte byte

No Operation NOP 0000 0000

Jump Conditional JCN 0001 CCCC AAAA AAAA

Fetch Immediate FIM 0010 RRR 0 DDDD DDDD

Send Register Control SRC 0010 RRR 1

Fetch Indirect FIN 0011 RRR 0

Jump Indirect JIN 0011 RRR 1

Jump Unconditional JUN 0100 AAAA AAAA AAAA

Jump to Subroutine JMS 0101 AAAA AAAA AAAA

Increment INC 0110 RRRR

Increment and Skip ISZ 0111 RRRR AAAA AAAA

Add ADD 1000 RRRR

Subtract SUB 1001 RRRR

Load LD 1010 RRRR

Exchange XCH 1011 RRRR

Branch Back and Load BBL 1100 DDDD

Load Immediate LDM 1101 DDDD

Write Main Memory WRM 1110 0000

Write RAM Port WMP 1110 0001

Write ROM Port WRR 1110 0010

Write Status Char 0 WR0 1110 0100

Write Status Char 1 WR1 1110 0101

Write Status Char 2 WR2 1110 0110

Write Status Char 3 WR3 1110 0111

Subtract Main Memory SBM 1110 1000

Bits: A: address, R: register number, C : condition, D : data

289

290 APPENDIX A. INTEL 4004 INSTRUCTION SET

Instruction Mne- 1st 2nd
monic byte byte

Read Main Memory RDM 1110 1001

Read ROM Port RDR 1110 1010

Add Main Memory ADM 1110 1011

Read Status Char 0 RD0 1110 1100

Read Status Char 1 RD1 1110 1101

Read Status Char 2 RD2 1110 1110

Read Status Char 3 RD3 1110 1111

Clear Both CLB 1111 0000

Clear Carry CLC 1111 0001

Increment Accumulator IAC 1111 0010

Complement Carry CMC 1111 0011

Complement CMA 1111 0100

Rotate Left RAL 1111 0101

Rotate Right RAR 1111 0110

Transfer Carry and Clear TCC 1111 0111

Decrement Accumulator DAC 1111 1000

Transfer Carry Subtract TCS 1111 1001

Set Carry STC 1111 1010

Decimal Adjust Accumulator DAA 1111 1011

Keyboard Process KBP 1111 1100

Designate Command Line DCL 1111 1101

Bits: A: address, R: register number, C : condition, D : data

B| MOS 65xx instruction

set

65xx addressing modes:

mode description assembly operand
a Absolute opc,A,B (BA)

(a,x) Absolute Indexed Indirect opc,A,B ((BA+X))
a,x Absolute Indexed with X opc,A,B (BA+X)
a,y Absolute Indexed with Y opc,A,B (BA+Y)
(a) Absolute Indirect opc,A,B ((BA))
A Accumulator opc ACCU
Immediate opc,A A
i Implied opc opc
r Program Counter Relative opc,A A+PC
s Stack opc (SP)
zp Zero Page opc,A (0A)

(zp,x) Zero Page Indexed Indirect opc,A ((0A+X))
zp,x Zero Page Indexed with X opc,A (0A+X)
zp,y Zero Page Indexed with Y opc,A (0A+Y)

(zp),x Zero Page Indirect Indexed with X opc,A ((0A)+X)
(zp),y Zero Page Indirect Indexed with Y opc,A ((0A)+Y)
opc: opcode byte. A, B: next bytes in code segment
BA: 16-bit address. 0A: zero-page address. (. . .): contents of address

291

292 APPENDIX B. MOS 65XX INSTRUCTION SET

65xx mnemonics:

ADC add M to A with carry
AND logic AND M with A
ASL arithm. shift left
BBR branch on bit reset
BBS branch on bit set
BCC branch on carry clear
BCS branch on carry set
BEQ branch on equal
BIT bit test
BMI branch on minus
BNE branch on not equal
BPL branch on plus
BRA branch always
BRK break
BVC branch on overflow clear
BVS branch on overflow set
CLC clear carry
CLD clear decimal mode
CLI clear IRQ disable bit
CLV clear overflow flag
CMP compare M to A
CPX compare M to X
CPY compare M to Y
DEC decrement M or A
DEX decrement X
DEY decrement Y
EOR Exclusive OR M with A
INC increment M or A
INX increment X
INY increment Y
JMP jump to
JSR jump to subroutine
LDA load A with M
LDX load X with M
LDY load Y with M

LSR logic shift right M or A
NOP no operation
ORA OR with M or A
PHA push A to stack
PHP push status on stack
PHX push X on stack
PHY push Y on stack
PLA pop A from stack
PLP pop status from stack
PLX pop X from stack
PLY pop Y from stack
RMB reset memory bit
ROL rotate left M or A
ROR rotate right M or A
RTI return from interrupt
RTS return from subroutine
SBC subtract from A with borrow
SEC set carry
SED set decimal mode
SEI set IRQ disable
SMB set memory bit
STA sore A in M
STP stop mode
STX store X in M
STY store Y in M
STZ store zero in M
TAX copy A to X
TAY copy A to Y
TRB test and reset memory bit
TSB test and set memory bit
TSX copy SP to X
TXA copy X to A
TXS copy X to SP
TYA copy Y to A
WAI wait for interrupt

A: accumulator. M: memory. X: X register. Y: Y register. SP: stack pointer. IRQ: inter-

rupt request

293

65xx instruction opcodes:

MSN LSN

↓ 0 1 2 3 4 5 6 7 8 9 A B C D E F

0 BRK ORA TSB ORA ASL RMB0 PHP ORA ASL TSB ORA ASL BBR0

s (zp,x) zp zp zp zp s # A a a a r

1 BPL ORA ORA TRB ORA ASL RMB1 CLC ORA INC TRB ORA ASL BBR1

r (zp),y (zp) zp zp,x zp,x zp i a,y A a a,x a,x r

2 JSR AND BIT AND ROL RMB2 PLP AND ROL BIT AND ROL BBR2

a (zp,x) zp zp zp zp s # A a a a r

3 BMI AND AND BIT AND ROL RMB3 SEC AND DEC BIT AND ROL BBR3

r (zp),y (zp) zp,x zp,x zp,x zp i a,y A a,x a,x a,x r

4 RTI EOR EOR LSR RMB4 PHA EOR LSR JMP EOR LSR BBR4

s (zp,x) zp zp zp s # A a a a r

5 BVC EOR EOR EOR LSR RMB5 CLI EOR PHY EOR LSR BBR5

r (zp),y (zp) zp,x zp,x zp i a,y s a,x a,x r

6 RTS ADC STZ ADC ROR RMB6 PLA ADC ROR JMP ADC ROR BBR6

s (zp,x) zp zp zp zp s # A (a) a a r

7 BVS ADC ADC STZ ADC RORO RMB7 SEI ADC PLY JMP ADC ROR BBR7

r (zp),y (zp) zp,x zp,x zp,x zp i a,y s (a,x) a,x a,x r

8 BRA STA STY STA STX SMB0 DEY BIT TXA STY STA STX BBS0

r (zp,x) zp zp zp zp i # i a a a r

9 BCC STA STA STY STA STX SMB1 TYA STA TXS STZ STA STZ BBS1

r (zp),y (zp) zp,x zp,x zp,y zp i a,y i a a,x a,x r

A LDY LDA LDX LDY LDA LDX SMB2 TAY LDA TAX LDY LDA LDX BBS2

(zp,x) # zp zp zp zp i # i A a a r

B BCS LDA LDA LDY LDA LDX SMB3 CLV LDA TSX LDY LDA LDX BBS3

r (zp),y (zp) zp,x zp,x zp,y zp i a,y i a,x a,x a,y r

C CPY CMP CPY CMP DEC SMB4 INY CMP DEX WAI CPY CMP DEC BBS4

(zp,x) zp zp zp zp i # i i a a a r

D BNE CMP CMP CMP DEC SMB5 CLD CMP PHX STP CMP DEC BBS5

r (zp),y (zp) zp,x zp,x zp i a,y s i a,x a,x r

E CPX SBC CPX SBC INC SMB6 INX SBC NOP CPX SBC INC BBS6

(zp,x) zp zp zp zp i # i a a a r

F BEQ SBC SBC SBC INC SMB7 SED SBC PLX SBC INC BBS7

r (zp),y (zp) zp,x zp,x zp i a,y s a,x a,x r

MSN: most-significant nibble, LSN: least-significant nibble

C| AVR Atmel instruction

set

AVR arithmetic and logic instructions

Mnem Operands Description Operation Flags Clk
onic
ADD Rd, Rr Add without Carry Rd ← Rd + Rr ZCNVH 1
ADC Rd, Rr Add with Carry Rd ← Rd + Rr + C ZCNVH 1
ADIW Rd, K Add Immediate to Word Rd+1:Rd ← Rd+1:Rd + K ZCNV 2
SUB Rd, Rr Subtract without Carry Rd ← Rd − Rr ZCNVH 1
SUBI Rd, K Subtract Immediate Rd ← Rd − K ZCNVH 1
SBC Rd, Rr Subtract with Carry Rd ← Rd − Rr − C ZCNVH 1
SBCI Rd, K Subtract Immediate with Carry Rd ← Rd − K − C ZCNVH 1
SBIW Rd, K Subtract Immediate from Word Rd+1:Rd ← Rd+1:Rd - K ZCNV 2
AND Rd, Rr Logical AND Rd ← Rd AND Rr ZNV 1
ANDI Rd, K Logical AND with Immediate Rd ← Rd AND K ZNV 1
OR Rd, Rr Logical OR Rd ← Rd OR Rr ZNV 1
ORI Rd, K Logical OR with Immediate Rd ← Rd OR K ZNV 1
EOR Rd, Rr Exclusive OR Rd ← Rd XOR Rr ZNV 1
COM Rd Ones’-Complement Rd ← $FF − Rd ZCNV 1
NEG Rd Two’s-Complement Rd ← $00 − Rd ZCNVH 1
SBR Rd,K Set Bit(s) in Register Rd ← Rd OR K ZNV 1
CBR Rd,K Clear Bit(s) in Register Rd ← Rd AND ($FFh - K) ZNV 1
INC Rd Increment Rd ← Rd + 1 ZNV 1
DEC Rd Decrement Rd ← Rd − 1 ZNV 1
TST Rd Test for Zero or Minus Rd ← Rd AND Rd ZNV 1
CLR Rd Clear Register Rd ← Rd XOR Rd ZNV 1
SER Rd Set Register Rd ← $FF - 1
MUL Rd,Rr Multiply Unsigned R1, R0 ← Rd × Rr C 2

295

296
A

P
P

E
N

D
IX

C
.

A
V

R
A
T

M
E

L
IN

S
T

R
U

C
T

IO
N

S
E

T

A
V

R
b
ran

ch
in

stru
ction

s
Mnem Operands Description Operation Flags Clk
onic
RJMP k Relative Jump PC ← PC + k + 1 - 2
IJMP Indirect jump to (Z) PC ← Z - 2
JMP k Jump PC ← k - 3
RCALL k Relative Call Subroutine PC ← PC + k + 1 - 3
ICAL Indirect Call to (Z) PC ← Z - 3
CALL k Call Subroutine PC ← k - 4
RET Subroutine Return PC ← STACK - 4
RETI Interrupt Return PC ← STACK I 4
CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 - 1/2/3
CP Rd,Rr Compare Rd − Rr ZCNVH 1
CPC Rd,Rr Compare with Carry Rd − Rr − C ZCNVH 1
CPI Rd,K Compare with Immediate Rd − K ZCNVH 1
SBRC Rr,b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 - 1/2/3
SBRS Rr,b Skip if Bit in Register Set if (Rr(b)=1) PC ← PC + 2 or 3 - 1/2/3
SBIC P,b Skip if Bit in I/O Register Cleared if(I/O(P,b)=0) PC ← PC + 2 or 3 - 1/2/3
SBIS P,b Skip if Bit in I/O Register Set if(I/O(P,b)=1) PC ← PC + 2 or 3 - 1/2/3
BRBS s,k Branch if Status Flag Set if (SREG(s)=1) then PC ← PC+k + 1 - 1/2
BRBC s,k Branch if Status Flag Cleared if (SREG(s)=0) then PC ← PC+k + 1 - 1/2
BREQ k Branch if Equal if (Z=1) then PC ← PC + k + 1 - 1/2
BRNE k Branch if Not Equal if (Z=0) then PC ← PC + k + 1 - 1/2
BRCS k Branch if Carry Set if (C=1) then PC ← PC + k + 1 - 1/2
BRCC k Branch if Carry Cleared if (C=0) then PC ← PC + k + 1 - 1/2
BRSH k Branch if Same or Higher if (C=0) then PC ← PC + k + 1 - 1/2
BRLO k Branch if Lower if (C=1) then PC ← PC + k + 1 - 1/2
BRMI k Branch if Minus if (N=1) then PC ← PC + k + 1 - 1/2
BRPL k Branch if Plus if (N=0) then PC ← PC + k + 1 - 1/2
BRGE k Branch if Greater or Equal, Signed if (N XOR V)=0 then PC ← PC+ k + 1 - 1/2
BRLT k Branch if Less Than, Signed if (N XOR V)=1 then PC ← PC + k + 1 - 1/2
BRHS k Branch if Half Carry Flag Set if (H=1) then PC ← PC + k + 1 - 1/2
BRHC k Branch if Half Carry Flag Cleared if (H=0) then PC ← PC + k + 1 - 1/2
BRTS k Branch if T Flag Set if (T=1) then PC ← PC + k + 1 - 1/2
BRTC k Branch if T Flag Cleared if (T=0) then PC ← PC + k + 1 - 1/2
BRVS k Branch if Overflow Flag is Set if (V=1) then PC ← PC + k + 1 - 1/2
BRVC k Branch if Overflow Flag is Cleared if (V=0) then PC ← PC + k + 1 - 1/2
BRIE k Branch if Interrupt Enabled if (I=1) then PC ← PC + k + 1 - 1/2
BRID k Branch if Interrupt Disabled if (I=0) then PC ← PC + k + 1 - 1/2

297

A
V

R
d
ata

tran
sfer

in
stru

ction
s
Mnem Operands Description Operation Flags Clk
onic
MOV Rd,Rr Copy Register Rd ← Rr - 1
LDI Rd,K Load Immediate Rd ← K - 1
LDS Rd,k Load Direct from SRAM Rd ← (k) - 3
LD Rd,X Load Indirect Rd ← (X) - 2
LD Rd,X+ Load Indirect and Post-Increment Rd ← (X), X ← X + 1 - 2
LD Rd,-X Load Indirect and Pre-Decrement X ← X - 1, Rd ← (X) - 2
LD Rd,Y Load Indirect Rd ← (Y) - 2
LD Rd,Y+ Load Indirect and Post-Increment Rd ← (Y), Y ← Y + 1 - 2
LD Rd,-Y Load Indirect and Pre-Decrement Y ← Y - 1, Rd ← (Y) - 2
LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) - 2
LD Rd,Z Load Indirect Rd ← (Z) - 2
LD Rd,Z+ Load Indirect and Post-Increment Rd ← (Z), Z ← Z+1 - 2
LD Rd,-Z Load Indirect and Pre-Decrement Z ← Z - 1, Rd ← (Z) - 2
LDD Rd,Z+q Load Indirect with Displacement Rd ← (Z + q) - 2
STS k,Rr Store Direct to SRAM (k) ← Rr - 3
ST X,Rr Store Indirect (X) ← Rr - 2
ST X+,Rr Store Indirect and Post-Increment (X) ← Rr, X ← X + 1 - 2
ST -X,Rr Store Indirect and Pre-Decrement X ← X - 1, (X) ← Rr - 2
ST Y,Rr Store Indirect (Y) ← Rr - 2
ST Y+, Rr Store Indirect and Post-Increment (Y) ← Rr, Y ← Y + 1 - 2
ST -Y, Rr Store Indirect and Pre-Decrement Y ← Y - 1, (Y) ← Rr - 2
STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr - 2
ST Z, Rr Store Indirect (Z) ← Rr - 2
ST Z+, Rr Store Indirect and Post-Increment (Z) ← Rr, Z ← Z + 1 - 2
ST -Z, Rr Store Indirect and Pre-Decrement Z ← Z - 1, (Z) ← Rr - 2
STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr - 2
LPM Load Program Memory R0 ← (Z) - 3
IN Rd,P In Port Rd ← P - 1
OUT P,Rr Out Port P ← Rr - 1
PUSH Rr Push Register on Stack STACK ← Rr - 2
POP Rd Pop Register from Stack Rd ← STACK - 2

298
A

P
P

E
N

D
IX

C
.

A
V

R
A
T

M
E

L
IN

S
T

R
U

C
T

IO
N

S
E

T

A
V

R
b
it

an
d

b
it-test

in
stru

ction
s

Mnem Operands Description Operation Flags Clk
onic
LSL Rd Logical Shift Left Rd(n+1) ← Rd(n),Rd(0) ← 0,C ← Rd(7) ZCNVH 1
LSR Rd Logical Shift Right Rd(n) ← Rd(n+1),Rd(7) ← 0,C ← Rd(0) ZCNV 1
ROL Rd Rotate Left Through Carry Rd(0) ← C,Rd(n+1) ← Rd(n),C ← Rd(7) ZCNVH 1
ROR Rd Rotate Right Through Carry Rd(7) ← C,Rd(n) ← Rd(n+1),C ← Rd(0) ZCNV 1
ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 ZCNV 1
SWAP Rd Swap Nibbles Rd(3..0) ↔ Rd(7..4) - 1
BSET s Flag Set SREG(s) ← 1 SREG(s) 1
BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1
SBI P,b Set Bit in I/O Register I/O(P,b) ← 1 - 2
CBI P,b Clear Bit in I/O Register I/O(P,b) ← 0 - 2
BST Rr,b Bit Store from Register to T T ← Rr(b) T 1
BLD Rd,b Bit load from T to Register Rd(b) ← T - 1
SEC Set Carry C ← 1 C 1
CLC Clear Carry C ← 0 C 1
SEN Set Negative Flag N ← 1 N 1
CLN Clear Negative Flag N ← 0 N 1
SEZ Set Zero Flag Z ← 1 Z 1
CLZ Clear Zero Flag Z ← 0 Z 1
SEI Global Interrupt Enable I ← 1 I 1
CLI Global Interrupt Disable I ← 0 I 1
SES Set Signed Test Flag S ← 1 S 1
CLS Clear Signed Test Flag S ← 0 S 1
SEV Set Two’s-Complement Overflow V ← 1 V 1
CLV Clear Two’s-Complement Overflow V ← 0 V 1
SET Set T in SREG T ← 1 T 1
CLT Clear T in SREG T ← 0 T 1
SEH Set Half Carry Flag in SREG H ←1 H 1
CLH Clear Half Carry Flag in SREG H ← 0 H 1
NOP No Operation - 1
SLEEP Sleep - 1
WDR Watchdog Reset - 1

S
ou

rce:
A
V

R
A

ssem
b
ler

U
ser

G
u
id

e
(d

o
c1022.p

d
f)

D| x86 instruction set

Instruction Meaning Opcode
AAA ASCII adjust AL after addition 0x37

AAD ASCII adjust AX before division 0xD5

AAM ASCII adjust AX after multiplication 0xD4

AAS ASCII adjust AL after subtraction 0x3F

ADC Add with carry 0x10. . . 0x15, 0x80/2. . . 0x83/2
ADD Add 0x00. . . 0x05, 0x80/0. . . 0x83/0
AND Logical AND 0x20. . . 0x25, 0x80/4. . . 0x83/4
CALL Call procedure 0x9A, 0xE8, 0xFF/2, 0xFF/3
CBW Convert byte to word 0x98

CLC Clear carry flag 0xF8

CLD Clear direction flag 0xFC

CLI Clear interrupt flag 0xFA

CMC Complement carry flag 0xF5

CMP Compare operands 0x38. . . 0x3D, 0x80/7. . . 0x83/7
CMPSB Compare bytes in memory 0xA6

CMPSW Compare words 0xA7

CWD Convert word to doubleword 0x99

DAA Decimal adjust AL after addition 0x27

DAS Decimal adjust AL after subtraction 0x2F

DEC Decrement by 1 0x48. . . 0x4F, 0xFE/1, 0xFF/1
DIV Unsigned divide 0xF6/6, 0xF7/6
ESC Used with floating-point unit 0xD8. . . 0xDF
HLT Enter halt state 0xF4

IDIV Signed divide 0xF6/7, 0xF7/7
IMUL Signed multiply 0xF6/5, 0xF7/5
IN Input from port 0xE4, 0xE5, 0xEC, 0xED
INC Increment by 1 0x40. . . 0x47, 0xFE/0, 0xFF/0
INT Call to interrupt 0xCC, 0xCD
INTO Call to interrupt if overflow 0xCE

IRET Return from interrupt 0xCF

JCC Jump if condition 0x70. . . 0x7F
JCXZ Jump if CX is zero 0xE3

JMP Jump 0xE9. . . 0xEB, 0xFF/4, 0xFF/5

299

300 APPENDIX D. X86 INSTRUCTION SET

Instruction Meaning Opcode
LAHF Load FLAGS into AH register 0x9F

LDS Load pointer using DS 0xC5

LEA Load Effective Address 0x8D

LES Load ES with pointer 0xC4

LOCK Assert BUS LOCK# signal 0xF0

LODSB Load string byte 0xAC

LODSW Load string word 0xAD

LOOP/LOOPX Loop control 0xE0. . . 0xE2
MOV Move 0xA0. . . 0xA3
MOVSB Move byte from string to string 0xA4

MOVSW Move word from string to string 0xA5

MUL Unsigned multiply 0xF6/4. . . 0xF7/4
NEG Two’s-complement negation 0xF6/3. . . 0xF7/3
NOP No operation 0x90

NOT Negate the operand, logical NOT 0xF6/2. . . 0xF7/2
OR Logical OR 0x08. . . 0x0D, 0x80. . . 0x83/1
OUT Output to port 0xE6, 0xE7, 0xEE, 0xEF
POP Pop data from stack 0x07, 0x0F, 0x17,

0x1F, 0x58...0x5F, 0x8F/0
POPF Pop FLAGS register from stack 0x9D

PUSH Push data onto stack 0x06, 0x0E, 0x16,
0x1E, 0x50...0x57, 0xFF/6

PUSHF Push FLAGS onto stack 0x9C

RCL Rotate left (with carry) 0xD0. . . 0xD3/2
RCR Rotate right (with carry) 0xD0. . . 0xD3/3
REPXX Repeat MOVS/STOS/CMPS/LODS/SCAS 0xF2, 0xF3
RET Return from procedure
RETN Return from near procedure 0xC2, 0xC3
RETF Return from far procedure 0xCA, 0xCB
ROL Rotate left 0xD0. . . 0xD3/0
ROR Rotate right 0xD0. . . 0xD3/1
SAHF Store AH into FLAGS 0x9E

SAL Shift Arithmetically left (signed shift left) 0xD0. . . 0xD3/4
SAR Shift Arithmetically right (signed shift right) 0xD0. . . 0xD3/7
SBB Subtraction with borrow 0x18. . . 0x1D, 0x80. . . 0x83/3
SCASB Compare byte string 0xAE

SCASW Compare word string 0xAF

SHL Shift left (unsigned shift left) 0xD0. . . 0xD3/4
SHR Shift right (unsigned shift right) 0xD0. . . 0xD3/5
STC Set carry flag 0xF9

STD Set direction flag 0xFD

STI Set interrupt flag 0xFB

STOSB Store byte in string 0xAA

STOSW Store word in string 0xAB

SUB Subtraction 0x28. . . 0x2D, 0x80. . . 0x83/5
TEST Logical compare (AND) 0x84, 0x84, 0xA8,

0xA9, 0xF6/0, 0xF7/0
WAIT Wait until not busy 0x9B

XCHG Exchange data 0x86, 0x87, 0x91. . . 0x97
XLAT Table look-up translation 0xD7

XOR Exclusive OR 0x30. . . 0x35, 0x80. . . 0x83/6

301

Floating Point x86
Instruction Meaning
F2XM1 2x − 1
FABS Absolute value
FADD Add
FADDP Add and pop
FBLD Load BCD
FBSTP Store BCD and pop
FCHS Change sign
FCLEX Clear exceptions
FCOM Compare
FCOMP Compare and pop
FCOMPP Compare and pop twice
FDECSTP Decrement floating point stack pointer
FDISI Disable interrupts
FDIV Divide
FDIVP Divide and pop
FDIVR Divide reversed
FDIVRP Divide reversed and pop
FENI Enable interrupts
FFREE Free register
FIADD Integer add
FICOM Integer compare
FICOMP Integer compare and pop
FIDIV Integer divide
FIDIVR Integer divide reversed
FILD Load integer
FIMUL Integer multiply
FINCSTP Increment floating point stack pointer
FINIT Initialize floating point processor
FIST Store integer
FISTP Store integer and pop
FISUB Integer subtract
FISUBR Integer subtract reversed
FLD Floating point load
FLD1 Load 1.0 onto stack
FLDCW Load control word
FLDENV Load environment state
FLDENVW Load environment state, 16-bit
FLDL2E Load log2(e) onto stack
FLDL2T Load log2(10) onto stack
FLDLG2 Load log10(2) onto stack
FLDLN2 Load ln(2) onto stack

302 APPENDIX D. X86 INSTRUCTION SET

Floating Point x86
Instruction Meaning
FLDPI Load π onto stack
FLDZ Load 0.0 onto stack
FMUL Multiply
FMULP Multiply and pop
FNCLEX Clear exceptions, no wait
FNDISI Disable interrupts, no wait
FNENI Enable interrupts, no wait
FNINIT Initialize floating point processor, no wait
FNOP No operation
FNSAVE Save FPU state, no wait, 8-bit
FNSAVEW Save FPU state, no wait, 16-bit
FNSTCW Store control word, no wait
FNSTENV Store FPU environment, no wait
FNSTENVW Store FPU environment, no wait, 16-bit
FNSTSW Store status word, no wait
FPATAN Partial arctangent
FPREM Partial remainder
FPTAN Partial tangent
FRNDINT Round to integer
FRSTOR Restore saved state
FRSTORW Restore saved state
FSAVE Save FPU state
FSAVEW Save FPU state, 16-bit
FSCALE Scale by factor of 2
FSQRT Square root
FST Floating point store
FSTCW Store control word
FSTENV Store FPU environment
FSTENVW Store FPU environment, 16-bit
FSTP Store and pop
FSTSW Store status word
FSUB Subtract
FSUBP Subtract and pop
FSUBR Reverse subtract
FSUBRP Reverse subtract and pop
FTST Test for zero
FWAIT Wait while FPU is executing
FXAM Examine condition flags
FXCH Exchange registers
FXTRACT Extract exponent and significand
FYL2X y · log2 x
FYL2XP1 y · log2(x+ 1)

For a full list of instructions and their descriptions please consult the AMD
reference AMD64 Architecture Programmer’s Manual Volume 1: Applica-
tion Programming (Publication No. 24592 of Advanced Micro Devices).

E| x86 BIOS, MS-DOS and

API and Linux interrupts

x86 BIOS software interrupts
(source: https://en.wikipedia.org/wiki/BIOS_interrupt_call)

Int Description
05h Print-screen button press
10h Video services
12h Return memory size
13h Low level disk services
14h Serial port services
15h Misc. system services
16h Keyboard services
17h Printer services
19h Load OS
1Ah real time clock services
1Bh Ctrl-Break handler
1Ch Timer tick handler
20h Program terminate
22h Program terminate address

x86 OS software interrupts

Int Description
21h MS-DOS API interrupts (see p. 304)
80h Linux system call (see p. 304)

303

304APPENDIX E. X86 BIOS, MS-DOS AND API AND LINUX INTERRUPTS

MS-DOS API (application programming interface) interrupt 21h
Note: MS-DOS must be loaded in memory

(source: https://en.wikipedia.org/wiki/DOS_API)

AH description
00h* Program terminate
01h Read character from stdin

02h Write character to stdout

03h Auxiliary input
04h Auxiliary output
05h Write character to printer
06h Console Input/Output
07h Direct char read stdin, no echo
08h Char read from stdin, no echo
09h Write string to stdout

0Ah Buffered input
0Bh Get stdin status
0Ch Flush buffer for stdin
0Dh Disk reset
0Eh Select default drive
19h Get current default drive
25h Set interrupt vector
2Ah Get system date
2Bh Set system date
2Ch Get system time
2Dh Set system time
2Eh Set verify flag
*: Also BIOS interrupt 20h

AH description
30h Get DOS version
31h Terminate and stay resident
35h Get Interrupt vector
36h Get free disk space
39h Create subdirectory
3Ah Remove subdirectory
3Bh Set working directory
3Ch Create file
3Dh Open file
3Eh Close file
3Fh Read file
40h Write file
41h Delete file
42h Seek file
43h Get/set file attributes
47h Get current directory
4Ch Exit program
4Dh Get return code
54h Get verify flag
56h Rename file
57h Get/set file date

Linux x86 interrupt 0x80
Note: Linux must be loaded in memory
(source: http://faculty.nps.edu/cseagle/assembly/sys_call.html)

arguments return
eax description ebx ecx edx eax

1 exit int error_code
3 read uint fd char *buf len

4 write uintfd const char *buf size
5 open const char *filename int flags int mode fd

6 close uint fd
13 time time_t *tloc time_t

Linux x86 syscall

(source: http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/)

arguments return
rax description rdi rsi rdx rax

0x00 read uint fd char *buf size len

0x01 write unit fd const char *buf size
0x02 open const char *filename int flags int mode fd

0x03 close uint fd
0x3c exit int error_code
0xc9 time time_t *tloc time_t

F| Linux (Debian) system

calls

(source: Debian man page syscall)

Syntax for system calls for various architectures in Linux Debian:

Arch/ABI Instruction System Ret Ret Error

call val1 val2

alpha callsys v0 v0 a4 a3

arc trap0 r8 r0 - -

arm/OABI swi NR - a1 - -

arm/EABI swi 0x0 r7 r0 r1 -

arm64 svc #0 x8 x0 x1 -

blackfin excpt 0x0 P0 R0 - -

i386 int $0x80 eax eax edx -

ia64 break 0x100000 r15 r8 r9 r10

m68k trap #0 d0 d0 - -

microblaze brki r14,8 r12 r3 - -

mips syscall v0 v0 v1 a3

nios2 trap r2 r2 - r7

parisc ble 0x100(%sr2,%r0) r20 r28 - -

powerpc sc r0 r3 - r0

powerpc64 sc r0 r3 - cr0.SO

riscv ecall a7 a0 a1 -

s390 svc 0 r1 r2 r3 -

s390x svc 0 r1 r2 r3 -

superh trap #0x17 r3 r0 r1 -

sparc/32 t 0x10 g1 o0 o1 psr/csr

sparc/64 t 0x6d g1 o0 o1 psr/csr

tile swint1 R10 R00 - R01

x86-64 syscall rax rax rdx -

x32 syscall rax rax rdx -

xtensa syscall a2 a2 - -

305

306 APPENDIX F. LINUX (DEBIAN) SYSTEM CALLS

Registers used to pass the system call arguments:

Arch/ABI arg1 arg2 arg3 arg4 arg5 arg6 arg7

--

alpha a0 a1 a2 a3 a4 a5 -

arc r0 r1 r2 r3 r4 r5 -

arm/OABI a1 a2 a3 a4 v1 v2 v3

arm/EABI r0 r1 r2 r3 r4 r5 r6

arm64 x0 x1 x2 x3 x4 x5 -

blackfin R0 R1 R2 R3 R4 R5 -

i386 ebx ecx edx esi edi ebp -

ia64 out0 out1 out2 out3 out4 out5 -

m68k d1 d2 d3 d4 d5 a0 -

microblaze r5 r6 r7 r8 r9 r10 -

mips/o32 a0 a1 a2 a3 - - -

mips/n32,64 a0 a1 a2 a3 a4 a5 -

nios2 r4 r5 r6 r7 r8 r9 -

parisc r26 r25 r24 r23 r22 r21 -

powerpc r3 r4 r5 r6 r7 r8 r9

powerpc64 r3 r4 r5 r6 r7 r8 -

riscv a0 a1 a2 a3 a4 a5 -

s390 r2 r3 r4 r5 r6 r7 -

s390x r2 r3 r4 r5 r6 r7 -

superh r4 r5 r6 r7 r0 r1 r2

sparc/32 o0 o1 o2 o3 o4 o5 -

sparc/64 o0 o1 o2 o3 o4 o5 -

tile R00 R01 R02 R03 R04 R05 -

x86-64 rdi rsi rdx r10 r8 r9 -

x32 rdi rsi rdx r10 r8 r9 -

xtensa a6 a3 a4 a5 a8 a9 -

G| MIPS instruction set

|} |~ |� funcR:

I:

immJ:

type |} |~ |� funcfR:

fI: type |} imm

������������ �� 21 �� 11 �
imm

imm

� �� � � �

opcode

opcode

opcode

opcode

opcode |} |~

Values in the tables on the next pages are hexadecimal, unless otherwise
specified

307

308 APPENDIX G. MIPS INSTRUCTION SET

MIPS: Logic and arithmetic instructions:

MIPS instruction Meaning

Mne- Operands Description Operation
monic
sll $rd, $rt, num Shift left logical $rd←$rt≪num

srl $rd, $rt, num Shift right logical $rd←$rt≫num

sra $rd, $rt, num Shift right arithmetic $rd←$rt≫num+msb

sllv $rd, $rt, $rs Shift left logic. var. $rd←$rt≪$rs

srlv $rd, $rt, $rs Shift right logic. var. $rd←$rt≫$rs

srav $rd, $rt, $rs Shift left arithm. var. $rd←$rt≫$rs+msb

num: (decimal) 0. . . 31
add $rd, $rt, $rs Add $rd←$rt+$rs

addu $rd, $rt, $rs Add unsigned $rd←$rt+$rs

sub $rd, $rt, $rs Subtract $rd←$rt-$rs

subu $rd, $rt, $rs Subtract unsigned $rd←$rt-$rs

addi $rd, $rt, imm Add immediate $rd←$rt+imm

addiu $rd, $rt, imm Add imm. unsign. $rd←$rt+imm

mult $rt, $rs Multiply $hi,$lo←$rt*$rs

multu $rt, $rs Multiply unsigned $hi,$lo←$rt*$rs

div $rt, $rs Divide $lo←$rt/$rs

$hi←$rt%$rs

divu $rt, $rs Divide unsigned $lo←$rt/$rs

$hi←$rt%$rs

imm: halfword
and $rd, $rt, $rs AND $rd←$rs&$rt

or $rd, $rt, $rs OR $rd←$rt|$rs

nor $rd, $rt, $rs NOR $rd←!($rt|$rs)

xor $rd, $rt, $rs XOR $rd←$rtˆ$rs

andi $rd, $rt, imm AND immediate $rd←$rt&imm

ori $rd, $rt, imm OR immediate $rd←$rt|imm

xori $rd, $rt, imm XOR immediate $rd←$rtˆimm

imm: halfword
slt $rd, $rt, $rs Set (1) if less than* $rd←($rt<$rs)?1:0

sltu $rd, $rt, $rs slt unsigned $rd←($rt<$rs)?1:0

slti $rd, $rt, imm slt immediate $rd←($rt<imm)?1:0

sltiu $rd, $rt, imm slt imm. unsigned $rd←($rt<imm)?1:0

imm: halfword. *: Unset (0) otherwise

309

MIPS: Logic and arithmetic instructions:

MIPS instruction Machine code

Mne- Operands for- opcode/ $A $B $C imm

monic mat func

sll $rd, $rt, num R 00/00 0 $rt $rd num

srl $rd, $rt, num R 00/02 0 $rt $rd num

sra $rd, $rt, num R 00/03 0 $rt $rd num

sllv $rd, $rt, $rs R 00/04 $rs $rt $rd 0

srlv $rd, $rt, $rs R 00/06 $rs $rt $rd 0

srav $rd, $rt, $rs R 00/07 $rs $rt $rd 0

num: (decimal) 0. . . 31
add $rd, $rt, $rs R 00/20 $rt $rs $rd 0
addu $rd, $rt, $rs R 00/21 $rt $rs $rd 0
sub $rd, $rt, $rs R 00/22 $rt $rs $rd 0
subu $rd, $rt, $rs R 00/23 $rt $rs $rd 0
addi $rd, $rt, imm I 08/- $rt $rd - imm

addiu $rd, $rt, imm I 09/- $rt $rd - imm

mult $rt, $rs R 00/18 $rt $rs 0 0

multu $rt, $rs R 00/19 $rt $rs 0 0

div $rt, $rs R 00/1a $rt $rs 0 0

divu $rt, $rs R 00/1b $rt $rs 0 0

imm: halfword
and $rd, $rt, $rs R 00/24 $rt $rs $rd 0

or $rd, $rt, $rs R 00/25 $rt $rs $rd 0

nor $rd, $rt, $rs R 00/27 $rt $rs $rd 0

xor $rd, $rt, $rs R 00/26 $rt $rs $rd 0

andi $rd, $rt, imm I 0c/- $rt $rd - imm

ori $rd, $rt, imm I 0d/- $rt $rd - imm

xori $rd, $rt, imm I 0e/- $rt $rd - imm

imm: halfword
slt $rd, $rt, $rs R 00/2a $rt $rs $rd 0

sltu $rd, $rt, $rs R 00/2b $rt $rs $rd 0

slti $rd, $rt, imm I 0a/- $rt $rd - imm

sltiu $rd, $rt, imm I 0b/- $rt $rd - imm

imm: halfword

310 APPENDIX G. MIPS INSTRUCTION SET

MIPS: Jump, branch and memory instructions:

MIPS instruction Meaning

Mne- Operands Description Operation
monic
j addr Jump pc←addr

jal addr Jump and link pc←addr,$ra←pc+4

jr $rs Jump register pc←$rs

jalr $rs, $rd Jump and link register pc←$rs,$rd←pc+4

beq $rt, $rs, addr Branch if equal $rs==$rt?pc←addr

bne $rt, $rs, addr Branch if not equal $rs!=$rt?pc←addr

bltz $rt, addr Branch if < 0 $rt<0?pc←addr

bgtz $rt, addr Branch if > 0 $rt>0?pc←addr

blez $rt, addr Branch if <= 0 $rt<=0?pc←addr

bgez $rt, addr Branch if >= 0 $rt>=0?pc←addr

if condition is false: pc←pc+4. See p. 314 for more branching instructions
mfhi $rd Move from HI $rd←hi

mthi $rs Move to HI $rs→hi

mflo $rd Move from LO $rd←lo

mtlo $rs Move to LO $rs→lo

lb $rd, offset($rt) Load byte $rd←M[$rt+offset]

lbu $rd, offset($rt) Load byte unsigned $rd←M[$rt+offset]

lh $rd, offset($rt) Load halfword $rd←M[$rt+offset]

lhu $rd, offset($rt) Load halfword unsigned $rd←M[$rt+offset]

lui $rd, imm Load upper immediate $rd←imm≪16

lw $rd, offset($rt) Load word $rd←M[$rt+offset]

sb $rs, offset($rt) Store byte $rs→M[$rt+offset]

sh $rs, offset($rt) Store halfword $rs→M[$rt+offset]

sw $rs, offset($rt) Store word $rs→M[$rt+offset]

appropriate bits only, rest unchanged. M: memory. offset: halfword

311

MIPS: Jump, branch and memory instructions:

MIPS instruction Machine code

Mne- Operands for- opcode/ $A $B $C imm

monic mat func

j addr J 02/- - - - mask

jal addr J 03/- - - - mask

jr $rs R 00/08 $rs 0 0 0

jalr $rs, $rd R 00/09 $rs 0 $rd 0

imm: 26-bit unsigned value. addr=page+4*imm, page=pc&$F0000000

mask=(addr&0FFFFFFC)/4

beq $rt, $rs, addr I 04/- $rt $rs - relative

bne $rt, $rs, addr I 05/- $rt $rs - relative

bltz $rt, addr I 01/- $rt 0 - relative

bgtz $rt, addr I 07/- $rt 0 - relative

blez $rt, addr I 06/- $rt 0 - relative

bgez $rt, addr I 01/- $rt 1 - relative

imm: 16-bit two’s-complement signed value. relative=(addr-pc-4)/4
mfhi $rd R 00/10 0 0 $rd 0

mthi $rs R 00/11 $rs 0 0 0

mflo $rd R 00/12 0 0 $rd 0

mtlo $rs R 00/13 $rs 0 0 0

lb $rd, offset($rt) I 20/- $rt $rd - offset

lbu $rd, offset($rt) I 24/- $rt $rd - offset

lh $rd, offset($rt) I 21/- $rt $rd - offset

lhu $rd, offset($rt) I 25/- $rt $rd - offset

lui $rd, imm I 0f/- 0 $rd - imm

lw $rd, offset($rt) I 23/- $rt $rd - offset

sb $rs, offset($rt) I 28/- $rt $rs - offset

sh $rs, offset($rt) I 29/- $rt $rs - offset

sw $rs, offset($rt) I 2b/- $rt $rs - offset

appropriate bits only, rest unchanged. offset: halfword
imm,offset: 16-bit two’s-complement signed value.

312 APPENDIX G. MIPS INSTRUCTION SET

MIPS: Floating-point instructions:

MIPS instruction Meaning

Mnemonic Operands Description Operation
lwc1 $fd, offs($rt) Load single $fd←M[$rt+offs]

ldc1 $fd, offs($rt) Load double $fd←M[$rt+offs]

swc1 $fs, offs($rt) Store single $fs→M[$rt+offs]

sdc1 $fs, offs($rt) Store double $fs→M[$rt+offs]

M: memory

Mnemonic Operands Description Operation
c.eq.SIZE $fs, $ft FPs equal cflag←($fs==$ft)?1:0

c.lt.SIZE $fs, $ft FPs less than cflag←($fs<$ft)?1:0

c.le.SIZE $fs, $ft FPs less or equal cflag←($fs<=$ft)?1:0

cvt.TO.FROM $fd, $fs Convert $fd = convert($fs)

add.SIZE $fd, $ft, $fs FP add $fd←$ft+$fs

sub.SIZE $fd, $ft, $fs FP subtract $fd←$ft-$fs

mul.SIZE $fd, $ft, $fs FP multiply $fd←$ft*$fs

div.SIZE $fd, $ft, $fs FP divide $fd←$ft/$fs

mov.SIZE $fd, $fs Copy $fd←$fs

mfc1 $rd, $fs Copy from co-proc. $rd←$fs

mtc1 $rs, $fd Copy to co-proc. $rs→$fd

SIZE = {s,d}. {TO,FROM} = {s,d,w}

Mnemonic Operands Description Operation
bc1t addr Branch if cflag true cflag? pc←addr

bc1f addr Branch if cflag false cflag? pc←addr

Otherwise: pc←pc+4

Software Interrupt:
Mnemonic Description
syscall System call

313

MIPS: Floating-point instructions:

MIPS instruction Machine code

Mnemonic Operands form opcode $A $B imm

lwc1 $fd, offs($rt) I 31 $rt $fd offs

ldc1 $fd, offs($rt) I 35 $rt $fd offs

swc1 $fs, offs($rt) I 39 $rt $fs offs

sdc1 $fs, offs($rt) I 3d $rt $fs offs

offs: 16-bit two’s-complement signed value.

Mnemonic Operands form opc/typ $A $B $C func

c.eq.SIZE $fs, $ft fR 11/tp $ft $fs 0 32

c.lt.SIZE $fs, $ft fR 11/tp $ft $fs 0 3c

c.le.SIZE $fs, $ft fR 11/tp $ft $fs 0 3e

cvt.TO.FROM $fd, $fs fR 11/from 0 $fs $fd to

add.SIZE $fd, $ft, $fs fR 11/tp $fs $ft $fd 00

sub.SIZE $fd, $ft, $fs fR 11/tp $fs $ft $fd 01

mul.SIZE $fd, $ft, $fs fR 11/tp $fs $ft $fd 02

div.SIZE $fd, $ft, $fs fR 11/tp $fs $ft $fd 03

mov.SIZE $fd, $fs fR 11/tp $fd $fs 0 06

mfc1 $rd, $fs fR 11/00 $rd $fs 0 00

mtc1 $rs, $fd fR 11/04 $rs $fd 0 00

SIZE, TO, FROM: {tp, from} = 10 (s), 11 (d), 14 (w). to = 20 (s), 21 (d), 24 (w)

Mnemonic Operands form opc/typ $A imm

bc1t addr fI 21/08 1 relative

bc1f addr fI 21/08 0 relative

imm: 16-bit two’s-complement signed value. relative=(addr-pc-4)/4

Software Interrupt:
Mnemonic form opc/func $A $B $C imm

syscall R 00/0c 0 0 0 0

Specify by $v0. See appendix I

314 APPENDIX G. MIPS INSTRUCTION SET

MIPS: (Some) pseudo-instructions:

rol $rd, $rt, num Rotate left $rd←rol($rt,num)

srl $at, $rt, 32-num

sll $rd, $rt, num

or $rd, $rd, $at

ror $rd, $rt, num Rotate right $rd←ror($rt,num)

sll $at, $rt, 32-num

srl $rd, $rt, num

or $rd, $rd, $at

blt $rt, $rs, addr Branch if less than $rt<$rs?pc←addr

slt $at, $rt, $rs

bne $at, $zero, addr

bgt $rt, $rs, addr Branch if greater than $rt>$rs?pc←addr

slt $at, $rs, $rt

bne $at, $zero, addr

ble $rt, $rs, addr Branch if less/equal $rt<=$rs?pc←addr

slt $at, $rs, $rt

beq $at, $zero, addr

bge $rt, $rs, addr Branch if greater/equal $rt<=$rs?pc←addr

slt $at, $rt, $rs

beq $at, $zero, addr

beqz $rt, addr Branch if equal zero $rt==0?pc←addr

beq $rt, $zero, addr

bnez $rt, addr Branch if not equal 0 $rt!=0?pc←addr

bne $rt, $zero, addr

move $rd, $rs Copy $rd←$rs

ori $rd, $zero, $rs

jalr $rs Jump and link register pc←$rs,$ra←pc+4

jalr $rs, $ra

315

MIPS: (Some) pseudo-instructions (cont.):

lw $rd, addr Load word from address $rd←M[addr]

lui $at, addr≫16

lw $rd, [addr AND 0x0000FFFF]($at),

li $rd, word Load immediate $rd←word

lui $at, word≫16

ori $rd, $at, word AND 0x0000FFFF

li $rd, halfword Load immediate $rd←halfword

ori $rd, $zero, halfword

la $rd, addr Load address $rd←addr

lui $at, addr≫16

ori $rd, $at, addr AND 0x0000FFFF

Note: equal to instruction li $rd, addr

to be implemented by macros (see Section 10.9):
inc $rt Increment $rt←$rt+1

addi $rt, $rt, 1

dec $rt Decrement $rt←$rt-1

subi $rt, $rt, 1

push $rs Push onto stack M[--$sp]←$rs

addiu $sp, $sp, -4

sw $rs, 0($sp)

pop $rd Pop from stack $rd←M[$sp++]

lw $rd, 0($sp)

addiu $sp, $sp, 4

return Return from subroutine pc←$ra

jr $ra

done Terminate
li $v0, 10

syscall

H| MARS (MIPS) Assem-

bler directives

Directive Meaning
Example

.data Start of data segment

.text Start of code segment

.globl Entry point for external
.globl main reference (linker)

.space n Reserve n bytes of space on
myarray: .space 12 the heap

.ascii "string" Store string in heap memory
mystring: .ascii "Ajax"

.asciiz "string" Store string+0x00 in heap
mytext: .asciiz "Benfica" memory

.byte b1, b2,...bn Store byte(s) in heap memory

.half h1, h2,...hn Store half-word(s) in memory

.word w1, w2,...wn Store word(s) in heap
myvector: .word 1, 2, 4 memory

.float f1, f2,...fn Store float(s) in heap
myvector: .float 1.0, 2.1, 3.6 memory

.double d1, d2,...dn Store double-precision float(s)
pi: .double 3.1415926E03 in heap memory

.eqv text text Define a substitution
.eqv myvalue 64

.macroend_macro Define a macro*
.macro endprog (not a function)

li a7, 10

ecall

.end_macro

*: (does not store it in memory)

317

I| (MARS) MIPS system

calls

function $v0 argument(s) return value(s)

print integer 1 $a0 = integer
print float 2 $f12 = float
print double 3 $f12, $f13 = double
print string 4 $a0 = address of null-

terminated string
read integer 5 $v0 integer read
read float 6 $f0 float read
read double 7 $f0,$f1 double read
read string 8 $a0 = address of buffer

$a1 = max. length
exit (terminate 10
execution)
print character 11 $a0 = character
read character 12 $v0 character read
open file 13 $a0 = address of filename $v0 file descriptor

$a1 = flags (0=read,
1=overwrite,9=append)
$a2 = mode (0)

read from file 14 $a0 = file descriptor $v0 number of chars read
$a1 = addr. input buffer (0:end-of-file, <0:error)
$a2 = max length

write to file 15 $a0 = file descriptor $v0 number of chars
$a1 = addr. output buffer written (<0: error)
$a2 = number of chars

close file 16 $a0 = file descriptor
exit (terminate 17 $a0 = termination result
with value)

319

320 APPENDIX I. (MARS) MIPS SYSTEM CALLS

function $v0 argument(s) return value(s)

print integer 34 $a0 = integer
in hexadecimal
print integer 35 $a0 = integer
in binary
print integer 36 $a0 = integer
as unsigned
set random seed 40 $a0 = integer
random int 41 $a0 = integer $a0: next random int
random int in 42 $a0 = integer $a0: next random int
range $a1 = limit in range 0. . . $a1-1
random float 43 $a0 = integer $f0: 0.0. . . 0.999. . .
random double 44 $a0 = integer $f0, $f1: 0.0. . . 0.999. . .

J| (RARS) RISC-V base in-

teger instruction set (RV32I)

type ��12�������� �� �� �� 11 �
src tgt ����R: dst opcode����

I: opcodetgtimm dst����

� � � � � �
�� ���er���� �¡¢��� £ ¤�¥ ¦§ ¤�¥ ¨ ¤�¥ ©§ �ª «¬¢ ¡«� � ®elds are

constructed on basis of the immediate value used in the operation

S/B: opcode����tgt
imm

(lsb)
src

imm

(msb)

¯

U/J: opcodeimm dst
¯

src tgt rmF: dst opcode���° fmt

Values in the tables on the next pages are hexadecimal, unless otherwise
specified

321

322APPENDIX J. (RARS) RISC-V BASE INTEGER INSTRUCTION SET (RV32I)

RARS RISC-V: Logic and arithmetic instructions:

RISC-V instruction Meaning

Mne- Operands Description Operation
monic
sll rd rt rs Shift left logical rd←rt≪rs

slli rd rt num sll immediate rd←rt≪num

srl rd rt rs Shift right logical rd←rt≫rs

srli rd rt num srl immediate rd←rt≫num

sra rd rt rs Shift right arithmetic rd←rt≫rs+msb

srai rd rt num sra immediate rd←rt≫num+msb

num: (decimal) 0. . . 31
add rd rt rs Add rd←rt+rs

addi rd rt imm add immediate rd←rt+imm

sub rd rt rs Subtract rd←rt-rs

mul rd rt rs Multiply (lo) rd←rt*rs [31:0]

mulh rd rt rs Multiply (hi) rd←rt*rs [63:32]

mulhu rd rt rs mulh unsigned rd←rt*rs [63:32]

mulhsu rd rt rs mulhu rt signed rd←rt*rs [63:32]

div rd rt rs Divide rd←rt/rs

divu rd rt rs div unsigned rd←rt/rs

rem rd rt rs Remainder rd←rt%rs

remu rd rt rs rem unsigned rd←rt%rs

imm: 32-bit signed
and rd rt rs AND rd←rs&rt

andi rd rt imm and immediate rd←rt&imm

or rd rt rs OR rd←rt|rs

ori rd rt imm or immediate rd←rt|imm

xor rd rt rs XOR rd←rtˆrs

xori rd rt imm xor immediate rd←rtˆimm

imm: 32-bit signed
slt rd rt rs Set (1) if less than* rd←(rt<rs)?1:0

slti rd rt imm slt immediate rd←(rt<imm)?1:0

sltu rd rt rs slt unsigned rd←(rt<rs)?1:0

sltiu rd rt imm sltu immediate rd←(rt<imm)?1:0

imm: 32-bit. *: Unset (0) otherwise

323

RARS RISC-V: Logic and arithmetic instructions:

RISC-V instruction Machine code

Mne- Operands for- opcode/ src tgt dst imm

monic mat fun3,7
sll rd rt rs R 33/1,00 rs rt rd

slli rd rt num I 13/1 rt rd num

srl rd rt rs R 33/5,00 rs rt rd

srli rd rt num I 13/5 rt rd num

sra rd rt rs R 33/5,20 rs rt rd

srai rd rt num I 13/5 rt rd num*
num: (dec.) 0. . . 31. *srai: set second bit of imm (imm=0x400+num)

add rd rt rs R 33/0,00 rs rt rd

addi rd rt imm I 13/0 rt rd num

sub rd rt rs R 33/0,20 rs rt rd

mul rd rt rs R 33/0,01 rs rt rd

mulh rd rt rs R 33/1,01 rs rt rd

mulhu rd rt rs R 33/3,01 rs rt rd

div rd rt rs R 33/4,01 rs rt rd

divu rd rt rs R 33/5,01 rs rt rd

rem rd rt rs R 33/6,01 rs rt rd

remu rd rt rs R 33/7,01 rs rt rd

num: 12-bit signed
and rd rt rs R 33/7,00 rs rt rd

andi rd rt imm I 13/7 rt rd imm

or rd rt rs R 33/6,00 rs rt rd

ori rd rt imm I 13/6 rt rd imm

xor rd rt rs R 33/4,00 rs rt rd

xori rd rt imm I 13/4 rt rd imm

imm: 12-bit signed
slt rd rt rs R 33/2,00 rs rt rd

slti rd rt imm I 13/2 rt rd imm

sltu rd rt rs R 33/3,00 rs rt rd

sltiu rd rt imm I 13/3 rt rd imm

imm: 32-bit

324APPENDIX J. (RARS) RISC-V BASE INTEGER INSTRUCTION SET (RV32I)

RARS RISC-V: Jump, branch and memory instructions:

MIPS instruction Meaning

Mne- Operands Description Operation
monic
jal rd addr Jump and link pc←addr,rd←pc+4

jalr rd rt offs jal register pc←rt+offs,rd←pc+4

beq rt rs addr Branch if equal rt==rs?pc←addr

bne rt rs addr Branch if not equal rt!=rs?pc←addr

bge rt rs addr Branch if greater/equal rt>rs?pc←addr

bgeu rt rs addr bge unsigned rt>rs?pc←addr

if condition is false: pc←pc+4. See p. 329 for more branching instructions

lb rd offs(rt) Load byte rd←M[rt+offs]

lbu rd offs(rt) lb unsigned rd←M[rt+offs]

lh rd offs(rt) Load halfword rd←M[rt+offs]

lhu rd offs(rt) lh unsigned rd←M[rt+offs]

lw rd offs(rt) Load word rd←M[rt+offs]

sb rs offs(rt) Store byte rs→M[rt+offs]

sh rs offs(rt) Store halfword rs→M[rt+offs]

sw rs offs(rt) Store word rs→M[rt+offs]

lui rd pattern Load upper immediate rd←pattern≪12

auipc rd pattern Add upper imm. to pc rd←pc+(pattern≪12)

appropriate bits only, rest unchanged. M: memory. offs(et): 12 bit 2’s-complement
pattern: 20-bit pattern

csrrw rd csr rs CSR read/write rd←csr←rs

csrrs rd csr rs CSR read/set rd←csr←rs

csrrc rd csr rs CSR read/clear rd←csr←rs

csrrwi rd csr imm CSR read/write imm. rd←csr←imm

csrrsi rd csr imm CSR read/set imm. rd←csr←imm

csrrci rd csr imm CSR read/clear imm. rd←csr←imm

read CSR before write CSR

Execution Control:
ecall System call
ebreak Breakpoint (pause)
wfi Wait for interrupt
uret Return from exception
fence Fence (sync. threads)
fence.i Fence i (sync. threads)

325

RARS RISC-V: Jump, branch and memory instructions:

MIPS instruction Machine code

Mne- Operands for- opcode/ src tgt dst imm

monic mat fun3

jal rd addr J 6f/ rd (addr-pc)/2

jalr rd rt offs I 67/0 rt rd offs

offs(et): 12-bit signed value rt+offs: LSB set to 0
imm: 20-bit (2’s-compl) (addr-pc)/2 rearranged bits: 20,10-1,11,19-12

beq rt rs addr S 63/0 rs rt addr-pc

bne rt rs addr S 63/1 rs rt addr-pc

bge rt rs addr S 63/5 rs rt addr-pc

bgeu rt rs addr S 63/7 rs rt addr-pc

addr: RARS code address label
imm: 12-bit signed value in two fields. addr=pc+imm

lb rd offs(rt) I 03/0 rt rd offset

lbu rd offs(rt) I 03/4 rt rd offs

lh rd offs(rt) I 03/1 rt rd offs

lhu rd offs(rt) I 03/5 rt rd offs

lw rd offs(rt) I 03/2 rt rd offs

sb rs offs(rt) S 23/0 rs rt offs

sh rs offs(rt) S 23/1 rs rt offs

sw rs offs(rt) S 23/2 rs rt offs

lui rd pattern U 37/ rd pattern

auipc rd pattern U 17/ rd pattern

appropriate bits only, rest unchanged. pattern: 20-bit pattern
offs(et): 12-bit value (for S in two fields).

csrrw rd csr rs I 73/1 rs rd csr

csrrs rd csr rs I 73/2 rs rd csr

csrrc rd csr rs I 73/3 rs rd csr

csrrwi rd csr imm I 73/5 imm rd csr

csrrsi rd csr imm I 73/6 imm rd csr

csrrci rd csr imm I 73/7 imm rd csr

csr: 12-bit value. imm: 5-bit value

Execution Control:
ecall * I 73/0 0 0 0 0

ebreak I 73/0 0 0 0 1

wfi I 73/0 0 0 0 105

uret I 73/0 0 0 0 2

fence I 0f/0 0 0 0 0

fence.i I 0f/1 0 0 0 0

*: Specify by a7. See appendix K

326APPENDIX J. (RARS) RISC-V BASE INTEGER INSTRUCTION SET (RV32I)

RISC-V: Floating-point instructions:

MIPS instruction Meaning

Mnemonic Operands Description Operation
flw fd offs(rt) Load single fd←M[rt+offs]

fld fd offs(rt) Load double fd←M[rt+offs]

M: memory. offs(et): 12-bit signed

fsw fs offs(rt) Store single fs→M[rt+offs]

fsd fs offs(rt) Store double fs→M[rt+offs]

M: memory. offs(et): 12-bit signed

fQ.SIZE rd ft fs FP compare rd←(ft Q fs)?1:0

Q: le, lt, eq. SIZE: s, d
fcvt.TO.FROM fd fs Convert fd = TO(fs)

fcvt.TO.U fd rs Convert fd = TO(rs)

fcvt.U.FROM rd fs Convert rd = int(fs)

U: signed w, unsigned wu. TO, FROM: s, d
fadd.SIZE fd ft fs FP add fd←ft+fs

fsub.SIZE fd ft fs FP subtract fd←ft-fs

fmul.SIZE fd ft fs FP multiply fd←ft*fs

fdiv.SIZE fd ft fs FP divide fd←ft/fs

fmadd.SIZE fd ft fs fa FP mul,add fd←ft*fs+fa

fnmadd.SIZE fd ft fs fa FP neg,mul,add fd←-(ft*fs+fa)

fmsub.SIZE fd ft fs fa FP mul,sub fd←ft*fs-fa

fnmsub.SIZE fd ft fs fa FP neg,mul,sub fd←-(ft*fs)+fa

fsqrt.SIZE fd fs FP square root fd←√fs
fmin.SIZE fd ft fs FP min fd←(ft<fs)?ft:fs

fmax.SIZE fd ft fs FP max fd←(ft>fs)?ft:fs

fsgnT.SIZE fd ft fs FP sign injection fd←ft,sign(fs)

fclass.SIZE rd fs FP classify rd←class(fs)

SIZE: s, d. T: j:sign, jn:inverted, jx:xor. class: See p.328
fmv.s.x fd rs Copy pattern fd←rs

fmv.x.s rd fs Copy pattern fs→rd

327

RISC-V: Floating-point instructions:

MIPS instruction Machine code

Mnemonic Operands form opc fun3 imm src tgt dst

flw fd offs(rt) I 07 2 offs rt fd

fld fd offs(rt) I 07 3 offs rt fd

offs(et): 12-bit signed, see p.328
Mnemonic Operands form opc fun3 imm src tgt dst

fsw fs offs(rt) S 27 2 offs fs rt

fsd fs offs(rt) S 27 3 offs fs rt

offs(et): 12-bit signed, see p.328

Mnemonic Operands form opc fun5 fmt rm src tgt dst

fQ.SIZE rd ft fs F 53 14 SIZE Q fs ft rd

Q: le=00, lt=01, eq=10. SIZE: s=00, d=01.
fcvt.TO.FROM fd fs F 53 08 TO 7 FROM fs fd

fcvt.TO.U fd rs F 53 1a TO 7 U rs fd

fcvt.U.FROM rd fs F 53 18 FROM 7 U fs rd

U: signed w=0, unsigned wu=1. TO, FROM: s=00, d=01
fadd.SIZE fd ft fs F 53 00 SIZE 7 fs ft fd

fsub.SIZE fd ft fs F 53 01 SIZE 7 fs ft fd

fmul.SIZE fd ft fs F 53 02 SIZE 7 fs ft fd

fdiv.SIZE fd ft fs F 53 03 SIZE 7 fs ft fd

fmadd.SIZE fd ft fs fa F 43 fa SIZE 7 fs ft fd

fnmadd.SIZE fd ft fs fa F 4f fa SIZE 7 fs ft fd

fmsub.SIZE fd ft fs fa F 47 fa SIZE 7 fs ft fd

fnmsub.SIZE fd ft fs fa F 4b fa SIZE 7 fs ft fd

fsqrt.SIZE fd fs F 53 0b SIZE 7 0 fs fd

fmin.SIZE fd ft fs F 53 05 SIZE 0 fs ft fd

fmax.SIZE fd ft fs F 53 05 SIZE 1 fs ft fd

fsgnT.SIZE fd ft fs F 53 04 SIZE T fs ft fd

fclass.SIZE fd ft fs F 53 1c SIZE 1 0 fs rd

SIZE: s=00, d=01. T: j=0, jn=1, jx=2
fmv.s.x fd rs F 53 1e 0 0 0 rs fd

fmv.x.s rd fs F 53 1c 0 0 0 fs rd

328APPENDIX J. (RARS) RISC-V BASE INTEGER INSTRUCTION SET (RV32I)

Immediate-value construction based on instruction register bits:

I-immediate

S-immediate

B-immediate

U-immediate

J-immediate

instruction
register

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

30
i

29
i

28
i

27
i

26
i

25
i

24
i

23
i

22
i

21
i

20
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

30
i

29
i

28
i

27
i

26
i

25
i

11
i

10
i

9
i

8
i

7
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

7
i

30
i

29
i

28
i

27
i

26
i

25
i

11
i

10
i

9
i

8
i

7
i0

31
i

30
i

29
i

28
i

27
i

26
i

25
i

24
i

23
i

22
i

21
i

20
i

19
i

18
i

17
i

16
i

15
i

14
i

13
i

12
i 0 0 0 0 0 0 0 0 0 0 0 0

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

31
i

19
i

18
i

17
i

16
i

15
i

14
i

13
i

12
i

20
i

30
i

29
i

28
i

27
i

26
i

25
i

24
i

23
i

22
i

21
i 0

31
i

30
i

29
i

28
i

27
i

26
i

25
i

24
i

23
i

22
i

21
i

20
i

19
i

18
i

17
i

16
i

15
i

14
i

13
i

12
i

11
i

10
i

9
i

8
i

7
i

6
i

5
i

4
i

3
i

2
i

1
i

0
i

31

31

31

31

31

31

30

30

30

30

30

30

29

29

29

29

29

29

28

28

28

28

28

28

27

27

27

27

27

27

26

26

26

26

26

26

25

25

25

25

25

25

24

24

24

24

24

24

23

23

23

23

23

23

22

22

22

22

22

22

21

21

21

21

21

21

20

20

20

20

20

20

19

19

19

19

19

19

18

18

18

18

18

18

17

17

17

17

17

17

16

16

16

16

16

16

15

15

15

15

15

15

14

14

14

14

14

14

13

13

13

13

13

13

12

12

12

12

12

12

11

11

11

11

11

11

10

10

10

10

10

10

9

9

9

9

9

9

8

8

8

8

8

8

7

7

7

7

7

7

6

6

6

6

6

6

5

5

5

5

5

5

4

4

4

4

4

4

3

3

3

3

3

3

2

2

2

2

2

2

1

1

1

1

1

1

0

0

0

0

0

0

Class(FP)

rd bit fs is
0 −∞
1 negative normal
2 negative subnormal
3 −0
4 +0
5 positive subnormal
6 positive normal
7 +∞
8 signaling NaN
9 quiet NaN

329

RARS RISC-V: (Some) pseudo-instructions:

bgt rt rs addr Branch if greater than rt>rs?pc←addr

blt rs rt addr

bgtu rt rs addr Branch if greater than rt>rs?pc←addr

bltu rs rt addr

ble rt rs addr Branch if less/equal rt<=rs?pc←addr

bge rs rt addr

bleu rt rs addr Branch if less/equal rt<=rs?pc←addr

bgeu rs rt addr

beqz rt addr Branch if equal zero rt==0?pc←addr

beq rt x0 addr

bnez rt addr Branch if not equal 0 $rt!=0?pc←addr

bne rt x0 addr

bltz rt addr Branch if less than 0 $rt<0?pc←addr

blt rt x0 addr

bgtz rt addr Branch if greater than 0 $rt>0?pc←addr

blt x0 rt addr

blez rt addr Branch if less or equal 0 $rt<=0?pc←addr

bge x0 rt addr

bgez rt addr Branch if greater or equal 0 $rt>=0?pc←addr

bge rt x0 addr

mv rd rs Copy integer rd←rs

add rd x0 rs

fmv.SIZE fd fs Copy s(ingle)/d(ouble) fd←fs

fsgnj.SIZE fd fs fs

nop No operation
addi x0 x0 0

j addr Jump pc←addr

jal x0 addr

jal addr Jump and link ra←pc+4,pc←addr

jal ra addr

jr rs offset Jump register pc←rs+offset

jalr x0 rs offset

jalr rd offset Jump and link register ra←pc+4,pc←rd+offset

jalr ra rd offset

call addr Call (jump-and-link) ra←pc+4,pc←addr

jal ra addr

ret Return (from call) pc←ra

jalr x0 ra 0

330APPENDIX J. (RARS) RISC-V BASE INTEGER INSTRUCTION SET (RV32I)

RARS RISC-V: (Some) pseudo-instructions (cont.):

lw rd addr Load word from address rd←M[addr]

auipc rd pc≫20

addi rd rd (addr-pc)&0000FFF

li rd word Load immediate rd←word

lui rd word≫12

addi rd rd word & 0x00000FFF

li rd 12-bit Load immediate $rd←12-bit

addi rd x0 12-bit

la rd addr Load address rd←addr

auipc rd pc≫20

addi rd rd (addr-pc)&0000FFF

sgt rd rt rs Set if greater than rd←(rt>rs)?1:0

slt rd rs rt

sgtu rd rt rs Set if greater than rd←(rt>rs)?1:0

sltu rd rs rt

seqz rd rt Set if equal 0 rd←(rt==0)?1:0

sltiu rd rt 1

snez rd rt Set if not equal 0 rd←(rt!=0)?1:0

sltu rd x0 rt

sltz rd rt Set if less than 0 rd←(rt<0)?1:0

slt rd x0 rt

sgtz rd rt Set if greater than 0 rd←(rt>0)?1:0

slt rd rt x0

To be implemented by macros (see Section 10.9):

inc rt Increment rt←rt+1

addi rt rt 1

dec rt Decrement rt←rt-1

addi rt rt -1

push rs Push onto stack M[--sp]←rs

addi sp sp -4

sw rs 0(sp)

pop rd Pop from stack rd←M[sp++]

lw rd 0(sp)

addi sp sp 4

done Terminate
li a7 10

ecall

K| (RARS) RISC-V sys-

tem calls

function a7 argument(s) return value(s)

print integer 1 a0 = integer
print float 2 fa0 = float
print double 3 fa0 = double
print string 4 a0 = address of null-

terminated string
read integer 5 a0 integer read
read float 6 fa0 float read
read double 7 fa0 double read
read string 8 a0 = address of buffer

a1 = max. length
malloc 9 a0 = amount (bytes) a0 address
exit (terminate 10
execution)
print character 11 a0 = character
read character 12 a0 character read
dir 17 a0 = write buffer

a1 = buffer length
close file 57 a0 = file descriptor
read from file 63 a0 = file descriptor a0 number of chars read

a1 = addr. input buffer (0:end-of-file, <0:error)
a2 = max length

write to file 64 a0 = file descriptor a0 number of chars
a1 = addr. output buffer written (<0: error)
a2 = number of chars

331

332 APPENDIX K. (RARS) RISC-V SYSTEM CALLS

function a7 argument(s) return value(s)

get time 30 a0 low 32 bits
a1 high 32 bits

print integer 34 a0 = integer
in hexadecimal
print integer 35 a0 = integer
in binary
print integer 36 a0 = integer
as unsigned
set random seed 40 a0 = generator int

40 a1 = seed int
random int 41 a0 = integer a0: next random int
random int in 42 a0 = generator int a0: next random int
range a1 = upper limit in range 0. . . a1-1
random float 43 a0 = generator int fa0: 0.0. . . 0.999. . .
random double 44 a0 = generator int fa0: 0.0. . . 0.999. . .

L
|

A
S
C

II

Dec Hex Bin Value Meaning
0 00 0000000 NUL Null character
1 01 0000001 SOH Start of header
2 02 0000010 STX Start of text
3 03 0000011 ETX End of text (Ctrl-C)
4 04 0000100 EOT End of transmission
5 05 0000101 ENQ Enquiry
6 06 0000110 ACK Acknowledge
7 07 0000111 BEL Bell
8 08 0001000 BS Back space
9 09 0001001 HT Horizontal tab
10 0A 0001010 LF Line feed ∗

11 0B 0001011 VT Vertical tab
12 0C 0001100 FF Form feed
13 0D 0001101 CR Carriage return ∗

14 0E 0001110 SO Shift out
15 0F 0001111 SI Shift in
16 10 0010000 DLE Data link escape
17 11 0010001 XON Device control 1
18 12 0010010 DC2 Device control 2
19 13 0010011 XOFF Device control 3
20 14 0010100 DC4 Device control 4
21 15 0010101 NAK Not acknowledge
22 16 0010110 SYN Synchronous idle
23 17 0010111 ETB End of transfer block
24 18 0011000 CAN Cancel
25 19 0011001 EM End of medium
26 1A 0011010 SUB Substitute (Ctrl-Z)
27 1B 0011011 ESC Escape
28 1C 0011100 FS File separator
29 1D 0011101 GS Group separator
30 1E 0011110 RS Record separator
31 1F 0011111 US Unit separator

∗: UNIX (Linux): newline is LF, MS-DOS (Windows):
newline is CR+LF

333

334
A

P
P

E
N

D
IX

L
.

A
S
C

II

Dec Hex Bin Value Dec Hex Bin Value Dec Hex Bin Value
32 20 0100000 space 64 40 1000000 @ 96 60 1100000 ’
33 21 0100001 ! 65 41 1000001 A 97 61 1100001 a
34 22 0100010 " 66 42 1000010 B 98 62 1100010 b
35 23 0100011 # 67 43 1000011 C 99 63 1100011 c
36 24 0100100 $ 68 44 1000100 D 100 64 1100100 d
37 25 0100101 % 69 45 1000101 E 101 65 1100101 e
38 26 0100110 & 70 46 1000110 F 102 66 1100110 f
39 27 0100111 ’ 71 47 1000111 G 103 67 1100111 g
40 28 0101000 (72 48 1001000 H 104 68 1101000 h
41 29 0101001) 73 49 1001001 I 105 69 1101001 i
42 2A 0101010 * 74 4A 1001010 J 106 6A 1101010 j
43 2B 0101011 + 75 4B 1001011 K 107 6B 1101011 k
44 2C 0101100 , 76 4C 1001100 L 108 6C 1101100 l
45 2D 0101101 - 77 4D 1001101 M 109 6D 1101101 m
46 2E 0101110 . 78 4E 1001110 N 110 6E 1101110 n
47 2F 0101111 / 79 4F 1001111 O 111 6F 1101111 o
48 30 0110000 0 80 50 1010000 P 112 70 1110000 p
49 31 0110001 1 81 51 1010001 Q 113 71 1110001 q
50 32 0110010 2 82 52 1010010 R 114 72 1110010 r
51 33 0110011 3 83 53 1010011 S 115 73 1110011 s
52 34 0110100 4 84 54 1010100 T 116 74 1110100 t
53 35 0110101 5 85 55 1010101 U 117 75 1110101 u
54 36 0110110 6 86 56 1010110 V 118 76 1110110 v
55 37 0110111 7 87 57 1010111 W 119 77 1110111 w
56 38 0110100 8 88 58 1011000 X 120 78 1110100 x
57 39 0111001 9 89 59 1011001 Y 121 79 1111001 y
58 3A 0111010 : 90 5A 1011010 Z 122 7A 1111010 z
59 3B 0111011 ; 91 5B 1011011 [123 7B 1111011 {
60 3C 0111100 < 92 5C 1011100 \ 124 7C 1111100 |
61 3D 0111101 = 93 5D 1011101] 125 7D 1111101 }
62 3E 0111110 > 94 5E 1011110 ˆ 126 7E 1111110 ~
63 3F 0111111 ? 95 5F 1011111 _ 127 7F 1111111 delete

i | Index

#, 188
0x, 19
65xx, 257

4004, 253

action table, 97
ADC, 267
add, 194
ALU, 16, 123
and, 195
API, 304
Aristotle, 42
arithmetic and logic unit, 16, 123
arithmetic shift, 195
array, 206
ASCII, 32, 333
.ascii, 188, 317
.asciiz, 188, 317
assembler directives, 186, 317
associative law, 45
asynchronous, 99
asynchronous computing, 282
Atmel, 266
audion, 5

back-side bus, 176
balanced ternary, 53
BCD, 18, 19
beq, 198
beqz, 199

BER, 178
Berkeley machine, 96
bge, 199
bgez, 198
bgt, 199
bgtz, 198
big endian, 152
binary numbers, 16
binary-coded decimal, 19
BIOS, 172
bit, 146
bit-error rate, 178
bitcoin, 237
ble, 199
blez, 198
blockchain, 237
blt, 199
bltz, 198
bne, 198
bnez, 199
(George) Boole, 43
Boole machine, 96
Boolean algebra, 42
boot loader, 171
bootstrapping, 171
brains, 284
branching, 2, 196
BSB, 176
BSOD (blue screen of death), 273
bus, 174

335

336 INDEX

C (programming language), 1
cache, 160
callee, 220
caller, 220
carry, 110
carry-look-ahead, 114
central processing unit, 126
Chinese room, 288
CMOS, 71
code segment, 162, 186
COM port, 168
comment, 188
Commodore 64, 262
commutative law, 45
comparator, 119
computer, 1
control logic, 126
CPU, 125, 126
CRC, 177

D flip-flop, 93
.data, 186
data alignment, 152
data register, 125
data segment, 162, 186
datapath, 126
De Morgan’s laws, 48, 79, 82
Debian Linux, 305
decimal system, 11
demultiplexer, 117
deMUX, 117
denormalized numbers, 135
Descartes, 287
destination operand, 185
destructive read, 159
Difference Engine, 3, 252
digital electronics, 5
DIL, 253
diode, 4
direct immediate, 169
direct indexed, 169
distributive law, 46
div, 194
DMA, 161

do-while loop, 201
don’t-cares, 62
double (float), 134
DRAM, 154
dyadic, 45, 125
dynamic memory allocation, 165

Ebers-Moll, 5
edge-triggered, 91, 92
ELIZA, 287
encoder, 118
engineering notation, 34
entropy, 146
.eqv, 187, 317
ergodic, 147
Ethernet, 176
exception, 172
excitation table, 95–97
extended (float), 134
external memory, 151

factorial, 223
falling-edge-triggered, 91
FEC, 178
finite-state machine, 3, 96
firmware, 172
flag, 126
flip-flop, 91
floating point, 133, 211
floating point division, 138
floating point range, 137
floating-point notation, 34
floating-point numbers, 133
FLOPS, 286
for loop, 201
forward error correction, 178
front-side bus, 175
FSB, 175
full-adder, 109, 112
functions, 2, 217
fundamental gates, 76

gated S/R-latch, 91
glitch, 86

INDEX 337

global variables, 166
.globl, 317
goto, 196
Gray code, 32, 105

half (float), 134
half adder (HA), 54
half-adder, 109
half-adder (HA), 110
Hamming, 178
handshake, 285
Harvard architecture, 161
hazard, 86
heap, 164, 221
hexadecimal, 18
hexal system, 11
HI, 194
Huntington postulates, 44, 47

IDE, 9
idempotent, 48
IEEE 754, 133
if . . . then goto, 196
imitation game, 287
immediate, 186
implied 1., 134
infinity, 135
information, 146
instruction register, 125
integer division, 205
integer multiplication, 204
Intel 4004, 253
Intel x86, 272
interrupt controller, 173
interrupt handler, 172
interrupt vector, 172
interrupts, 172
inverter, 70, 72, 76
IR, 125
IRQ, 172

j, 197
J/K flip-flop, 91, 92
jal, 218

jump, 196
jump-and-link, 218
jump-to-register, 218

Karatsuba, 132
Karnaugh maps, 5, 59, 84
Kleene logic, 53

la, 192
largest denormalized number, 136
largest normalized number, 136
latch, 89
li, 190
LIFO, 165
little endian, 152
LO, 194
load address, 192
load immediate, 190
local variables, 166
logic gates, 5
logic shift, 195
long division, 131
loop, 2
LSB, 17
lw, 192

machine code, 130
macro code, 130
macro-assembly, 8
macros, 224
magnetic core memory, 157
mask, 203
masking, 203
MASM, 276
material implication, 6
Maya number system, 13
MCU, 266
Mealy machine, 96
memory mapping, 207
memory-management unit, 167
mfhi, 194
mflo, 194
MFS, 252
micro-assembly, 8

338 INDEX

micro-controller, 266
minimum feature size, 252
minterm, 56
MIPS file I/O, 194
MIPS pseudo-instructions, 314,

329
MMU, 167
mnemonic, 185
Moore machine, 96
Moore’s law, 7
MOS 65xx, 257
move, 190
MSB, 18
mult, 194
multiplexer, 105, 115
multiplication, 130
multiplication look-up table, 132
MUX, 105, 115

NaN, 135
NAND-gate, 72, 73
NASM, 277
negative numbers, 28
Newton-Raphson, 140
nibble, 151
no-operation, 152, 197
non-linear electronics, 4
nop, 152, 197, 214
nor, 195
NOR-gate, 74
normalized numbers, 134
Northbridge, 175
not a number, 135
NOT-gate, 72
number conversion, 25

object-oriented programming,
161

octal, 18
octuple (float), 134
Ohm’s law, 4
opcode, 127, 185
operand, 185
operating system, 162

or, 195
overlay, 168, 267

paging, 167, 198
parity, 100, 177
passing by reference, 2, 218
passing by value, 2, 218
PC, 125
pointer, 2, 162
polling, 174
pop, 166, 221
PoS, 56
pow, 143
powf, 143
Priest’s logic, 53
Princeton architecture, 161
product-of-sums, 56
program counter, 125, 126
pseudo instruction, 183, 190, 191,

199, 224
push, 166, 221

quadruple (float), 134
quantum computing, 282
qubit, 283

race condition, 94
RAM, 151, 164
random logic, 129
random-access memory, 164
RARS, 239
recursive function, 223
recursivity, 2
redundant information, 176
registers, 125
reserving space, 162
ripple-carry adder, 112, 113
RISC, 1
rising-edge-triggered, 91
RJ45, 176
rol, 196
ROM, 156, 171
Roman numbers, 14
ror, 196

INDEX 339

rotate, 196
Russian-peasant algorithm, 23,

204

s-registers, 183, 220
S/R-latch, 90
scientific notation, 34
score, 12
segmentation, 273
sequencer, 96, 97
Set theory, 42
SHA-256, 237
Shannon entropy, 147
Shannon-Hartley channel

capacity, 176
shift, 195
sign-magnitude, 15, 28
significand, 134
single (float), 134
sll, 196
sllv, 196
slt, 199
smallest denormalized number,

136
smallest normalized number, 136
SMD, 266
SoP, 56
source operand, 185
Southbridge, 175
.space, 317
square root, 215
sra, 196
SRAM, 154
srav, 196
srl, 196
srlv, 196
stack, 164, 165, 217, 221
state diagram, 100
static memory allocation, 164
static-0 hazard, 86
static-1 hazard, 86
steady-state, 85
strobe, 127
struct, 206

sub, 194
sum-of-products, 56
supercomputer, 285
sw, 192
syscall, 189
system call, 172, 188, 305

T flip-flop, 93
t-registers, 183, 220
target operand, 185
Taylor expansion, 141
ternary logic, 53, 110
.text, 186
third-generation programming

languages, 8
three-bit counter, 99
toggle, 92
transient behavior, 86
transistor, 5
transition table, 97
tri-state, 55, 76, 77
trit, 54, 110
truth tables, 55
(Alan) Turing, 287
Turing test, 287
twisted pair, 176

UART, 168
unsigned integer, 18
USB, 176

variable-length instructions, 254
Vice, 262
virtual memory, 167
volatile memory, 156
Von Neumann architecture, 126,

161
Von Neumann bottleneck, 160

while loop, 201
.word, 186

x86, 272
xor, 195
XOR-gate, 75

340 INDEX

YWIYGI, 32, 164, 187 zero, 13, 135
zero-page addressing, 257

