
MIPS| Assembler programming

Peter Stallinga

peter@stallinga.org

MIPS: Assembler programming (paperback)
Peter Stallinga
v. 1.0 (June 9, 2018)

Copyright c© 2018 Peter Stallinga. Creative Commons Attribution 2.5

ISBN: 978-0-244-68801-1

Typefaces: Times Roman. Helvetica, Free Sans
Typesetting: LATEX2e with TexLive in TexMaker
Graphical: Inkscape and PjotrSoft. All pictures made by the author,
except the photo used for the cover (Weber VanHeber) and Pictures
4 (adapted from Wikipedia), 5 (Wikipedia), 10 (output of MARS 4.5
of Sanderson and Vollmar), and 17 (Wikipedia).

stallinga.org
Non-pro�t science organization

ii

Contents

1 Introduction . 1

2 Number systems . 11

2.1 Binary numbers . 16
2.2 Negative numbers . 18
2.3 Hexadecimal . 21
2.4 ASCII . 22

3 Architecture of MIPS . 25

4 MIPS assembler language implementation 33

4.1 Input/output (system calls) and memory access 37
4.2 Arithmetic . 43
4.3 Jump and branch. (goto, if . . . then . . .) 45
4.4 Loops; (for, while, do-while) 50
4.5 Arrays and structures 52
4.6 Floating-point numbers 57
4.7 Functions and the stack 70
4.8 Calculating blockchain 78

Appendices .

A MIPS Instruction set . 81

B Assembler directives . 85

C System calls . 87

iii

D ASCII . 89

iv

1| Introduction

This book is part of a course of Computer Architecture at the first of
a university. One part of that discipline is programing the hardware
in a low level. While mainly talking about general concepts, it then
explains a specific assembler language designed for a specific architec-
ture, namely MIPS, which for didactic purposes is perfect in that it
is a RISC-type architecture (reduced instruction set computer) which
thus has a limited amount of instructions.

But where does all this fit in? Up front it has to be said that
it is assumed here that the reader is comfortable with higher-level
programming languages. Specifically, it is assumed that the reader
knows the basic concepts of the C programming language:

• Data types

• Variables and constants

• Comment

• Input/output (printf, scanf)

• If, if-else and switch; conditional execution

• Loops: for, while, do-while

• Arrays and structs

• Functions (and recursivity)

• Passing by value and passing by reference

1

• Pointers

Especially the last item — pointers — is very important because
basically everything in assembler is pointers, as we will see! We will
also see that nearly all concepts of the list above are not part of as-
sembler. There are no functions. There are no arrays and structures.
Variables do not exist. No looping instructions exist. All these con-
cepts we have to implement ourselves, but we will see that the assem-
bler is already prepared to implement these concepts and we will learn
how to implement them one by one. We will conclude that the link
between C and assembler is quite strong.

Now the main question is, why should we want to learn to write
programs in assembler, if we already know how to program in a higher-
level programming language?

1. Understanding the level below makes us write code in the level
above better. For example, if we know that divisions are slower
implemented in assembler compared to multiplications, we might
want to replace a C instruction a = b/5.0 by a = 0.2*b.

2. In cases when hardware is limited, we are forced to optimize the
code to increase efficiency of using memory space and computing

time. This means going to the low level of assembler.

If you want to jump to the ’goodies’, because you came here only to
learn how to program in assembler, you can directly jump to Chapter
4. But the thing I want to address now is: where does this all fit
in? That is, in our knowledge of the universe and in the way we
think in general? And how exactly did we wind up programming in
assembler and what will we do with this knowledge? In this chapter
some background will be given about computing and how it fits in the
layers of knowledge of a university course of Informatics (information
processing).

One thing is the information itself, the ideas we are going to process
with our hardware. The hard facts — ’numbers’ — that we will process
to come up with processed information. Maybe the temperature data
on the planet processed to come up with a prediction what weather it
will be tomorrow. Or maybe an analysis of the stock market to see if we
can determine a pattern. This being only monitoring the world, maybe

2

we actually want to use the computer to control the world in things as
simple as maintaining the temperature inside a car at a desired value.
As we will see in Chapter 2, these ’data’ (the ’numbers’) only exist
in our heads. What exists in reality is the hardware state, described
by electronic properties such as voltages, currents, and charges. The
link between the two, the state of the hardware and its behavior on
the one hand and the interpretation of that state by concepts in our
head, is the realm of Computer Architecture. A gate has 5 volt at its
output port, which we interpret as ’true’ or ’1’, etc. The hardware
seems to follow the logic in our head. In fact, the hardware is designed

to implement the logic of our head. A well-designed architecture can
efficiently and rapidly process the information in the way we imagined
it.

The other thing is the hardware, the physical object that processes
our information. The first observation is that it is a so-called finite-
state machine, meaning that it can be in one of a limited number of
states. This number of states is large, but finite. To give an idea:
a computer with 1 GB of memory has 28000000000 different possible
states. Large, but not infinite. The finiteness limitation is especially
felt for smaller memory units. The contents of a memory cell or a
register in MIPS is 32 bits and this has only 232 different possible
states (about 4 billion). This is especially felt when doing floating-
point calculations. Whereas in integer calculations (Z) the limitations
of our computer being a finite-state machine are to a certain point
rather irrelevant and only limit the range of calculations, for floating-
point calculations these limitations are severe and we have to keep
them in mind. A single ’float’ of 32 bits can take only 232 different
values, there where the number of real numbers (R) is infinite, even if
we were to limit the range of the numbers (for instance only between
0 and 1).

While not inherently necessary, modern computers are all elec-
tronic. This means that the state of the machine is defined in terms
of electronic properties. It has not always been like that. Imagine, the
first automatic processor, the Difference Engine of Charles Babbage
in the beginning of the 19th century, was a fully mechanical machine.
However, since the 20th century computers are electronic, first with
vacuum tubes and later with transistors and integrated circuits (of
transistors).

3

We can thus place this entire thing in the knowledge tree of science.
Layers of knowledge of Informatics:

The starting layer is Physics. A short while after the Big Bang,
so the theory goes, particles were created that consisted of quarks
that later condensed into electrons, protons and neutrons. Especially
the electrons interest us here. They are charged particles and can
thus be manipulated by electrical fields. At this layer of knowledge we
speak of Particle Physics, which is not very relevant for an Informatics
engineer, but also about the Maxwell Equations, which govern the
behavior of the charged particles. And then especially the electrons,
which interest us here foremost. While, in principle, we can also make
computers using the positively-charged particles, the protons, this is
less convenient because protons are about three orders of magnitude
heavier than the negatively-charged electrons and ’protonics’ is thus
expected to be significantly slower than ’electronics’. This layer of
knowledge is the realm of Electronic engineers (and Physics alike),
but of somewhat less interest for the Informatics engineer.

The next layer of knowledge is Electronics. Here we learn concepts
of ’current’ (which is the movement of charge; how much charge —
coulomb — passes a cross-section per second) and ’voltage’ (which is
the amount of potential energy that is stored in a coulomb of charge).
We now start suffering here from the most-irritating error ever made
by a scientist, namely attributing a negative charge to the electron
instead of a positive one. This is so annoying that we always have to
imagine that if we have a current from A to B, we have, in fact, a
flow of electrons from B to A. That is, if we still want to have some
link to the layer of Physics. Most Electronic engineers prefer to make
a level of abstraction and just talk about current as if it is a mere
mathematical property, forgetting that currents consists of moving
electrons. It is possible to get away with this and such abstraction of
ignoring underlying levels of knowledge is quite common, as we will
see. Electronic engineers now talk about Ohm’s Law (R = V/I) and
power consumption (P = V 2/R) and the likes. Moreover, they talk
about capacitance (C = Q/V) and inductance (L = dI/V dt). (R is
resistance, V is voltage, Q is charge, I is current, C is capacitance, L
= inductance, t is time, and I = dQ/dt). We can call this level ’linear
electronics’ since all properties scale linearly: if the voltage increases
by a factor 2, the current will also increase by a factor 2, etc. See

4

V

I

V

I

V

I

Picture 1: Linear electronics, non-linear electronics and digital elec-
tronics (I-V curves)

Picture 1.
This brings us immediately to the next level. If linear electronics

exist, also non-linear electronics exist. Actually, here is where it starts
getting interesting. A so-called diode does not have a linear current-
voltage relation, but an exponential behavior instead. The current
grows exponentially with the applied voltage (or the voltage grows
logarithmically with the applied current; for an electronics engineer it
is all the same). This is called Ebers-Moll equation, named after two
German scientists,

I = I0

[

exp

(

V

VT

)

− 1

]

(1)

Even more interesting is a diode, which has a current-voltage relation
between A and B controlled by a third connection, C. The resistance
(and current) between A en B is thus controlled by a voltage placed
at C, and we thus have a trans-resistor, or transistor. An entire world
of electronics opened up by the invention of this non-linear behavior.
While vacuum tubes — the ’audion’ — of De Forest already had this
behavior, especially the miniaturization of the transistor made it pop-
ular. Signals could be amplified and ’analog’ electronics in general
surged, for instance radios and televisions. In all these systems the
signals are analog in that any value between the supply voltages can
exist.

For the Informatics engineers the real fun starts with highly non-
linear electronics. By combining transistors in certain ways circuits
can be made that are amplifying so much that basically only two
(saturation) states exist because the voltages at the output can never
exceed the supply voltages (see Picture 1). We can call this binary
or ’digital electronics’. We enter the realm of Informatics, because we

5

can assign logical values to these two states and process information in
a binary, digital way. Moreover, the digital processing of information
begins here, because we can make circuits (logic gates) that have two
inputs and one output, the output depends on the logical states of the
two inputs. We can imagine here OR-gates, NOR-gates, AND-gates,
XOR-gates and NAND-gates. Most university courses offer lectures in
digital systems, or digital electronics, that treat such systems from the
electronics point of view or from the logical point of view. The latter
deals with things such as Karnaugh maps to implement any logic based
on simple gates, while the former talks about things like CMOS (com-
plementary [channel-type] metal-oxide-semiconductor transistors) to
find the most power-efficient implementation of the desired basic logic
functions. We see here that this level of knowledge is mixed. It is
where Electronic engineers meet with Informatics engineers and they
talk about functionality and electronic implementation of that func-
tionality.

With two input lines and one output line, there are exactly 16
possible logic circuits. Some of them are silly, because they do not
depend on any of the inputs (the output always being the logic state
’false’ or always the logic state ’true’), or only on one input (copying
it, or inverting it), and some of them are redundant (that is, more
redundant than others, since any functionality can be implemented
by, for instance, only NANDs). That leaves basically the five logic
circuits mentioned above: AND, NAND, OR, NOR, XOR. They are
shown in bold here below and marked with an *.

The 16 possible 2-input 1-output logic gates:

A B F
A

L
S
E

A
A

N
D

B

A
A

N
D

N
O

T
B

A B
A

N
D

N
O

T
A

B A
X

O
R

B

A
O

R
B

A
N

O
R

B

A
N

X
O

R
B

N
O

T
B

(
N

O
T

B
)

O
R

A

N
O

T
A

(
N

O
T

A
)

O
R

B

A
N

A
N

D
B

T
R
U

E

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

* * * * *

Note that the names of the devices is what we, humans, give them, to
somehow make sense out of their behavior. An AND-gate, for example,
is named as such because if we assume a high voltage is ’true’ (written

6

Picture 2: The one-input-one-output inverter (NOT) gate and the
five basic two-input-one-output logic gates (AND, OR, NAND, NOR,
XOR)

down as ’1’ here) and applied at both entrances then, and only then,
the output voltage is high, meaning ’true’ or ’1’. We’ll get back to
this distinction about physical level and logic abstraction later in the
coming chapters.

Combining more transistors allows for the implementation of more
advanced functionality such as flip-flops (memories), latches, clocks,
etc. And also advanced processing circuits such as ALUs (arithmetic
logic units) and even CPUs (central processing units). I would like
to refer the reader here to the book of Tanenbaum, Structured Com-

puter Organization, where the architecture of computers is very well
described.

With increased complexity of the functionality more and more tran-
sistors are needed. Miniaturization of the transistors made it possible
to pack ever more transistors per square centimeter; we all know the
famous Moore’s Law — named after Gordon Moore — that predicts
that the number of transistors per area doubles every 2 years, a speed
of innovation that is still going on in 2018. We have reached a level of
integration that is some tens of billions of transistors on a single ’chip’.
Some very powerful circuits can be built with so many transistors and
it no longer makes sense of talking about individual gates, let alone
transistors. We must make another level of abstraction if we want
to keep on understanding what is going on in our hardware. Here is
where our knowledge layer of Computer Architecture starts kicking in.
A central processor has several input lines and output lines. It can be
imagined (sic) as a logic array where we have two sets of input data
elements, and one set of lines that define the functionality selected.
We can recognize here information as data and a ’program’, which
consists of supplying a combination of functionalities to ’execute’ on
the data.

7

In the first approach, the program and data were supplied to the
processor in the form of logic states at the entrance of the processor, for
instance mechanical switches supplying voltages ’high’ and ’low’. We
can represent such programs symbolically by 0s and 1s. The work of
an engineer was to translate desired functionality into a set of 0s and
1s to be supplied to the machine. We call such programs therefore
’machine language’. A program for calculating the product of two
numbers might be
1001101011100101

0111100101101101

1110000010110100

Of course, this is hardly legible to the engineer and mistakes must
have been quite frequent. One engineer must have coined the idea
that doing such repetitive work — it often consisted of doing the same
translations of a human-readable logic program to a machine readable
machine language — might actually be done by the machine itself.
(Take that for a machine making machines). While at first the idea
was considered ludicrous — ”Why having the machine do something
that can perfectly be done by a human being?!” — the paradigm of
computing must have shifted from doing as little as possible by the
computer to doing as much as possible by the computer. In the 21st
century we say, ”Why have a human doing work that can perfectly
be done by a computer?!” The idea of a ’compiler’ or ’translator’
was born. The machine running a program (written in machine lan-
guage, of course) was fed human-readable ’code’ that was translated
into machine-readable machine-language data and then run (or only
stored somewhere, for later use).

The first versions of these meta-languages were still rather close
to the machine language and only mnemonics were used for the ’in-
structions’ (functionalities selected). So, the machine code for adding
two registers ’01110111’ was written as add. This type of program-
ming is called second-generation programming languages, or (macro)
’assembler’, exactly the layer of knowledge of this book. It is a level
of programming quite close to the hardware level. (There can also be
a level of programming inside the ALU and the control logic, which is
called micro-assembler, which will not be covered by this book).

Of course, the hierarchy of Informatics does not stop here, but at
this point it is nice to take a look back at where we have arrived. Basi-

8

cally, by writing the code ’add’, etc., we control the flow of electrons in
our processor. Of course, in no way is it necessary for an Informatics
engineer to know that electrons are flowing in the processor. The only
thing an engineer needs to know is the functionality of the machine
and not how it is implemented! An Electronics engineer needs to know
about what is going to be done with the electronics, as well as knowing
how to implement it in the Physics layer. A Physics graduate is basi-
cally just doing philosophy and could not care less what is being done
with the knowledge acquired. No scientist — that is, J. J. Thomson
— ever thought, ”Let me discover the electron, so that we can add two
numbers fast.”

The engineers soon must have discovered that very often the same
functionality was implemented. It was always things like for-loops, or
if-then-else structures. People must have started writing programs in
meta-assembler, nearly English. Programs were designed by the well
known fluxograms, then written down in English, as in something like
for (i=0; i<10; i++){

if (i % 2 == 0)

printf("even")

else

printf("odd")

}

which would then be translated by an engineer into assembler and fed
to the computer. Well, they must have thought, if assembler can be
translated into machine-language by the machine, why not let the ma-
chine translate the near-English-source code directly?! This created
the so-called third-generation programming languages, of which FOR-
TRAN (Formula Translator), BASIC (Beginners All-Purpose Sym-
bolic Instruction Code), Pascal (named after French Mathematician
Blaise Pascal), and C are the most famous. This is normally the
’starting level’ of the engineer and scientist alike. It is well possible to
never look back at the levels below, but learning assembler is useful
for the reasons given earlier.

After having learned high-level ’imperative’ programming, students
then normally go on and learn to write in object-oriented languages
such as C++, Delphi, or Java. Obviously, this now falls way out-
side the realm of Computer Architecture and the subject of this book.
Even more distanced are the subjects of applications such as writing

9

in ’frameworks’, where several different programming languages can
be joined. As an example may serve Android Studio, that combines
writing in Java, HTML (XML) and Javascript all in one IDE (inte-
grated development environment). But don’t forget that when you are
connecting to Facebook on your mobile telephone, that it is all based
on object-oriented programming, that is based on third-level program-
ming languages, that is based on assembler, that is based on machine
language, that is based on integrated logic circuits, that is based on
non-linear electronics, that is based on electronics, that is based on
physics. At the end, it is all because of the Big Bang.

10

2| Number systems

We all use number systems in daily life. The most famous in modern
world is the one based on the number 10, the so-called decimal system.
The first myth is that this is a very adequate number, because it is
nice ’round’. However, note that any base number, when expressed in
that base is written as 10. For example, in the binary system (base
2), 2 is written as . . . 10.

The second myth is that 10 is good for a base system because ”we
have ten fingers”. Well, if the number of fingers were to determine
what number system to use, it would be 6 or 11. To show why this is:
Imagine each hand shows a digit, for instance your left hand shows the
units and your right hand the multitudes of 6. You can start counting:
decimal=RL (right hand, left hand):

1=01, 2=02, 3=03, 4=04, 5=05, 6=10, 7=11, 8=12, 9=13,
10=14, 11=15, 12=20, 13=21 . . .

and so forth. This is very convenient. A base-6 hexal number system
works very well when communicating with your hands, see Picture 3
for an example of how to represent 27 (base 10) with our hands (base
6). So: five fingers per hand implies that base-six is ideal. Probably
for this reason the base-6 number system survived for a long time,
with England being the most famous case, since most people in the
world have two hands with five fingers each.

The disadvantage of the hexal system is that numbers get large
faster. To give an example, nearly 1 million (999 999) in the decimal
system has 6 digits while in the hexal system it has 8 (33 233 343).

Other number systems that were popular were base-20. This unit

11

4x6 + 3 = 27
Picture 3: An example of the hexal (base 6) number system with
counting on our hand. One hand is used for the units and the other
hand for the multiples of the base number 6

is called a ’score’ in English. Take for example this funny Limerick:

A Dozen, A Gross, And A Score,
Plus Three Times The Square Root Of Four,
Divided By Seven,
Plus Five Times Eleven,
Equals Nine Squared Plus Zero, No More.

(A dozen is 12, a gross is a dozen dozens, 12 × 12 = 144). Some
languages still remind us of this score-based system. French speak
of ’quatre vingts’ for eighty, giving a calculation in the number 80 =
4 × 20. Likewise, the Danes talk of ’tres’ and ’firs’ to indicate sixty
(= 3 × 20) and eighty (= 4 × 20), respectively. Confusingly, other
Danish numbers are based on the decimal system: ’tyve’ (20), ’tredive’
(30), ’fyrre’ (40). And ’halvtreds’ does not mean half ’tres’ (60/2=30),
but halfway 40 and 60, thus 50. Are you still following it? Well, the
Danes seem capable of seeing the logic.

Interestingly, also the Mayas used this system of scores, see Picture
4. A unit was represented by a dot and five dots was written as a
horizontal bar. Subsequent units, multiples of the base number 20,
were stacked on top. In this way, the number 829 (= 2 × 202 + 1 ×
201 + 9 × 200), for example, would be written as two dots above one
dot above four dots and a bar. Note that they also had a symbol for
zero, which was needed by their stacking method. How else could one
distinguish between 801 (two dots on top of a dot) and 41 (two dots
on top of a dot)?

12

Picture 4: The number system of the Mayas based on scores (20).
Their unit was represented by a dot, with five of them written as a
horizontal bar. The numbers 0 to 19 are shown here. Subsequent
digits were stacked vertically on top of each other. An example is the
number 829 (= 2 × 202 + 1 × 201 + 9 × 200) would be written as
two dots above one dot above four dots and a bar. Curiously, they
also had a symbol for the number zero, probably because the stacking
method requires it.

Now, for all you conspiracy thinkers — those that believe in aliens
— the question arises how two distinctly separated civilizations (the
Mayas and the Danes), that had no contact with each other (since they
were separated by the Atlantic Ocean), both seemingly independently
decided on 20 for their number system.

The best system was probably invented by the Babylonians. They
used a combination of base 10 and base 6, and this makes it divisible
by 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, and 30. That is especially useful
when doing divisions with results after the floating point. Compare
for example the difficulty of our decimal system to write out 1/3. It
gives a result with an infinite number of digits, 0.3333. . . (= 3/10 +
3/102 + 3/103 . . .). While for the Babylonians, 1/3 is simply 20/60,
or a single digit ’20’ after the floating point.

13

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

Picture 5: The Babylonian number system based on 10 and 6. A zero
was represented by a space, some place without any symbol. (Source:
Wikipedia)

Note that our geometry and timing is still done in the Babylonian
number system. Especially here you can see the power of this number
system. A full 360o circle can be divided into 2 angles of 180o, 3 angles
of 120o, 4 angles of 90o, 5 angles of 72o, 6 angles of 60o, 8 angles of
45o, 9 angles of 40o, 10 angles of 36o, 12 angles of 30o, 15 angles of
24o, 18 angles of 20o, 20 angles of 18o, 24 angles of 15o, 36 angles of
10o, 40 angles of 9o, 45 angles of 8o, 60 angles of 6o, 72 angles of 5o,
90 angles of 4o, 120 angles of 3o, 180 angles of 2o, and 360 angles of
1o.

Maybe the worst number system was invented by the Romans.
(Makes you wonder how they could be so crafty and build bridges
and roads everywhere). The problem with their system is that it does
not have a unique base number, nor does it follow the method of
ordering the significance of the digits, as for instance is done by the
Mayas (highest significant digit on top) or by modern counting (most-
significant digit on the left). The Romans had mixed significance, as
we all know. Placing a small unit before a large unit puts a negative
weight on it. Where ’I’ indicates 1 and ’C’ stands for 100 (clearly
bigger), 99 is represented by placing the I before the C. Moreover, the
concept of digits (units multiplied with a base raised to some power)
does not even exist. It creates a system where the same number can

14

be represented in more than one way. As an example, 99 can also be
written as XCIX, which is −10 + 100− 1 + 10.

I: 1
V: 5
X: 10
L: 50
C: 100
D: 500
M: 1000

Examples:
2018 = MMXVIII = 1000 + 1000 + 10 + 5 + 1 + 1 + 1
2019 = MMXIX = 1000 + 1000 − 1 + 10 + 10

This Roman system we had better forget as soon as possible! Instead,
more useful, are standard sign-magnitude number systems

• Digits have weight. The most-significant digit is on the utmost
left, the least significant digit on the utmost right

• Each step to the left has a weight that is increased by the base
number and each step to the right the weight is reduced by the
base number

• Negative numbers are preceded by a ’−’ sign. Positive numbers
can (but don’t have to) be preceded by a ’+’ sign. Alternatively,
numbers can be limited to positive, unsigned’ values only

As an example, if the number base is x, then the number represented
by ±abcdex is ±(a × x4 + b × x3 + c × x2 + d × x1 + e × x0). For
example, 123456 = 1×64+2×63+3×62+4×61+5×60 = 186510 =
0× 104 + 1× 103 + 8× 102 + 6× 101 + 5× 100, where the convention
was used to write the base as a subscript.

Note that floating point numbers follow this scheme. After the
floating point (floating comma in some countries), the digits get di-
vided by the base: ±abc.dex is ±(a× x2 + b× x1 + c× x0 + d× x−1 +
e× x−2). Conversion between base systems can become impossible in
floating point numbers. Some numbers, like 0.36, are still possible to
convert to base 10, namely 3 × 6−1 = 5 × 10−1 = 0.510. But what
about 0.16? In base-10 it is an infinite string: 0.166666. . . 10. The
reason why Babylonians used the base-60 number system; it is more
likely a division can be written out with a finite number of digits.

15

Binary numbers

”There are 10 types of people:
Those that know binary and those that don’t!”

The most important of all number systems for informatics is base-
2. That is because the underlying hardware works with binary state
electronics. Any output of any gate can be either low or high. Any
capacitor is either full or empty. It does not matter at this moment
which one we will ascribe to the logic (sic) ’1’ and which one a logic ’0’.
Now, if we have a set of transistors each in a certain state designated
by ’1’ or ’0’ we can imagine (sic) that they represent a binary number.
Note that the number does not exist in the computer!

Now, this needs some explanation. How can it be that numbers do
not exist in the computer? Well, it can be said even stronger: numbers
do not exist in the world! They only exist in our heads. They are part
of mathematical — that is, imaginary — worlds. The only thing that
exists in reality are things that are in the realm of Physics, and all these
things can be expressed in terms of the seven basic S.I. units (kilogram,
meter, second, ampere, mol, candela, kelvin) or their derivatives. Do
not confuse a sole number with a quantity which has unit ’mol’. If
there are two people in the room, in fact there are 2.0/NA mol people
in the room, with NA the number of Avogadro, NA = 6.022×1023/mol.

Likewise, if we have a number (binary or hexadecimal, or whatever)
in a computer, what we in fact have is merely a set of gate states (as in
high voltage or low voltage) that we can — in our heads — represent
with a number. To show why this makes sense: the same combination
of gate states, for instance a 32-bit register, can simultaneously be
thought of as a binary number, a decimal integer, an ASCII character,
or a single-precision floating point number.

Why it is useful to do this abstraction is that, if we assume these
to represent numbers, the logic of the hardware (ALU, arithmetic logic
unit) follows exactly the logic we have in our heads of how it should
behave if they are numbers. The behavior of our computer is consistent
with our model in our heads. We can thus think as a computer, or a
computer ’thinks’ the same way we do.

Returning to the subject, binary numbers are very useful in infor-

16

matics because the gates work with two possible states. Note that
not necessarily computers have to use this architecture. Russians are
famous for having developed the so-called ternary computers that use
ternary logic (three possible values) and trits instead of the more com-
mon binary logic (two possible values) and bits in their calculations.
Apparently, it had some advantages, such as lower power consumption
and lower production cost (Wikipedia). Obviously, for such comput-
ers, it makes much more sense to represent the information as ternary
numbers. However, this technology has died out and we will no longer
refer to it here.

What we have to remember, however, at this point is that there
is a symbolic link between a physical set of gate states, the binary
representation, and the non-binary interpretation of what information
is, in fact, stored there. For example, for a 4-bit gate output we have
the following approaches:

Physical levels:
5 volt, 0 volt, 5 volt, 5 volt

Boolean logic levels (assuming false is low voltage, true is high
voltage):

true, false, true, true
Binary logic levels (assuming ’0’ is low voltage, ’1’ is high volt-
age):

’1’, ’0’, ’1’, ’1’
Binary value (assuming 0 is ’0’ and 1 is ’1’):

1011
Decimal value (assuming binary value is unsigned int with MSB
left):

11
Hexadecimal value (idem):

B
With only the first (physical) level really existing and the other just
figments of our thought in our heads. Note that it is here assumed
that high voltage = true = ’1’ = 1. In any step this assumption can
be different, as in, for instance, high voltage = ’false’. As long as the
behavior of the hardware is consistent with the symbolic translation,
it is correct. An AND-gate should have a physical behavior that is
consistent with the truth table of the logic-AND function.

An important observation to make here: A combination of n binary

17

gates — or n ’bits’ — can take p = 2n different possible ’values’ or
output combinations. Reasoning the other way around: we need at
least n = log2(p) bits (gates) to represent a number that has p possible
values. So, for instance, with 3 bits we can ’store’ integer numbers from
0 to 7. (Or from 27 to 34, if we’d want that). Reasoning the other
way around, to store the 26 letters of the English alphabet, we need
at least log2(26) = 4.7 bits. That is, 5 bits, since partial bits do not
exist.

An 8 bit register or memory address can thus store 28 = 256 dif-
ferent values. If they are unsigned integers including zero, they’d span
from 0 to 255. If we represent them in binary, the rightmost bit, the
least-significant bit (LSB) has weight 20 = 1 and the leftmost bit, the
most-significant bit (MSB) has weight 27 = 128. Likewise, 32-bit reg-
isters store integer numbers ranging from 0 to 4,294,967,295. As an
example for a 4-bit unsigned integer:
1101 = 1× 23 + 1× 22 + 0× 21 + 1× 20

= 8 + 4 + 1 = 13

Negative numbers

So far so good. The problems start when we want to interpret the bit
patterns to include negative numbers as well and have the hardware
capable of dealing with them, that is, having the ALU perform gate
operations that are consistent with the formalism of the gate voltages
representing numbers that can be positive as well as negative.

As a first thought, we may think that using — ’sacrificing’ — one
bit for the sign, and continuing to use rest for the magnitude (which
now has a smaller range, 0 unto 2n−1 − 1), is a good idea. This
scheme is called sign-magnitude. See picture 6a for a three-bit ex-
ample. Assuming the above binary combination is a sign-magnitude
representation of an integer number, with the MSB representing the
sign (0=’+’, 1=’−’), it would give:
1101 = −(1× 22 + 0× 21 + 1× 20)

= −(4 + 1) = −5
Note the peculiar property of sign magnitude that there are two num-
bers zero, namely +0 (0000) and −0 (1000). More problematic is
that we can no longer use the same hardware for these sign-magnitude

18

0

0

0

0 0
 1

0 1 00
 1

 11

0

01 0

 1

1 1 0

1
 1

 1

0

1

2

3-4

-3

-2

-1

c) Two's complement

under�ow
over�ow

no carry!

0

0

0

0 0
 1

0 1 00
 1

 11

0

01 0

 1

1 1 0

1
 1

 1

0

1

2

3-0

-1

-2

-3

a) Sign magnitude

0

0

0

0 0
 1

0 1 00
 1

 11

0

01 0

 1

1 1 0

1
 1

 1

0

1

2

3-3

-2

-1

-0

b) Ones' complement

Picture 6: Three ways of representing signed numbers; 3-bit exam-
ples. a) In sign-magnitude, the MSB is the sign bit, 0 for ’+’ and
1 for ’−’, while the rest of the bits form a normal unsigned n−1-bit
number. b) In ones’ complement, to find a negative number, simply
all bits are inverted. c) In two’s complement, the MSB has a negative
weight −2n−1 while the other bits have positive weight +2n−2 to +20

numbers and the unsigned integer numbers. As an example, imag-
ing adding 1 to −2 using hardware we learned from digital electronics
classes:

binary unsigned sign-

magnitude

0001 = 1 = +1
1010 = 10 = −2
1011 = 11 = −3

The same problem we have in the alternative ones’ complement.
In this scheme, we just invert all the bits to get the negative number,
see Picture 6b for a 3-bit example. Like in sign-magnitude, positive
numbers start with a 0 and negative numbers start with a 1. Moreover,
also here we have two possible ways to represent zero, namely +0 =
0000 (all 0s) and −0 = 1111 (all 1s). While the calculations at first
sight seem to be going better, we have this peculiar result that occurs
whenever there is a ’carry’:

19

binary unsigned ones’-

complement

0011 = 3 = +3
1110 = 14 = −1
0001 = 1 = +1

This can be solved by adding the carry that was ignored. Adding it
will make the final result +2, which is correct. However, we would like
to use the same hardware for unsigned integer operations and signed
integer operations and not have to resort to additional operations when
adding signed integers. The perfect solution for that is the two’s-
complement representation of numbers.

Two’s-complement is formed by giving a negative weight −2n−1 to
the MSB, and positive weights +2n−2 to +20 to the other bits until
the LSB. See Picture 6c for a 3-bit example. The number −1 is thus
formed by a combination of all 1s. And this gives another way of
rapidly looking at things:

• If the first bit (MSB) is 0, treat the number as a normal unsigned
int, with every (other) bit its proper weight. Example, 00000100:
The positional weight of the only 1 is 4, therefore the number is
+4.

• If the first bit (MSB) is 1, the number is equal to −1 plus every
0 (sic) weighted by its positional weight negatively. Example,
11111011: The positional weight of the only 0 is 4, therefore the
number is −1− 4 = −5.

This might come in handy sometimes when we want rapid answers.
Especially for large bit numbers. (A 32-bit two’s-complement int,

11111111111111111111111111111011
is also −5)

Note that two’s complement has only one version of zero. It more-
over follows the same hardware logic as unsigned integers. Interest-
ingly, the carry can be ignored (see Picture 6c). On the other hand, a
phenomenon occurs halfway the bit pattern, when the MSB changes
0 → 1,

20

binary unsigned two’s-

complement

0111 = 7 = +7
0001 = 1 = +1
1000 = 8 = −8

this effect is called ’overflow’, and similarly, ’underflow’ occurs when
subtracting numbers (or adding a negative number) resulting in a
change of MSB bit 1 → 0.

To find the 2’s-complement of a number we can use either of the
two following algorithms,

• Invert all bits and add 1. Example:

3 = 00000011
invert: 11111100
add 1: 11111101 =−3

• Starting from the right (LSB) simply copy until the first 1 en-
countered. From then on, but excluding this one, invert all bits.

For a programmer it is not important to exactly know how this is
implemented in hardware. The only thing that matters for us is that
signed integer numbers in MIPS are represented in two’s-complement.
We can consider the hardware itself as a black box. If the reader is
interested, I recommend the book of Tanenbaum, Computer Architec-

ture.

Hexadecimal

The hexadecimal number system is very often used in informatics, it
is ubiquitous, for a very simple reason: it is simply joining 4 binary
bits and attributing a symbol to it. This for a very simple and unique
reason: to save space. Hexadecimal is simply shorthand binary. So,
we have the simple look-up table as in Table I.

In this table, the A does not represent the letter A of the English
alphabet, but rather the bit combination 1010 written in hexadecimal.
(As we will see in a moment, the letter ’A’ in the English alphabet is
coded in ASCII in a different way).

21

Table I: Look-up table for hexadecimal

binary decimal hexadecimal BCD

0000 0 0 0
0001 1 1 1
0010 2 2 2
0011 3 3 3
0100 4 4 4
0101 5 5 5
0110 6 6 6
0111 7 7 7
1000 8 8 8
1001 9 9 9
1010 10 A -
1011 11 B -
1100 12 C -
1101 13 D -
1110 14 E -
1111 15 F -

The table also shows binary-coded decimal (BCD), which is similar
to hexadecimal but the last combinations are not used. However, a
computer calculating in BCD is not the same as a computer calculating
in binary (and thus hexadecimal). As an example, in BCD, 07+07 =
14: or 0000 0111 + 0000 0111 = 0001 0100, while in binary (hex) it is
00000111 + 00000111 = 00001110, or 0x07 + 0x07 = 0x0E.

Here we used the convention of preceding the hexadecimal number
by ’zero-x’ (0x) to distinguish the hexadecimal numbers from other
number systems. As an example, 0x12 is 1 × 161 + 2 × 160 = 18 in
decimal representation.

ASCII

Another way of representing data is by ASCII (American standard
code for information interchange). Or, to say it the other way around:

22

instead of storing in 8 bits a binary number, signed or unsigned, we
can also store there a letter of text. Simply by convention (!) we can
attribute binary patterns to letters of the English alphabet, for in-
stance, 01000001 is equal to the letter ’A’ and 01100001 to the letter
’a’. And it now becomes very clear why we could make the statement
that the numbers or the letters do not exist in the computer, but only
in our heads. Because, how could it otherwise be that the exact same
physical state of the computer, with 01000001 in a memory address
— describing the combination of output voltages or charge states —
contains the short unsigned byte 65 as well as the letter ’A’? This
is only possible if the physical states really exist and the interpreta-

tion of these states — the numbers or letters — is only in our heads.
The computer follows our thoughts and when we process 7+7, the bit
pattern for 14 comes out:
00000111 = 7

00000111 = 7

======== +

00001110 = 14

That is to say, if we use the same hardware to process the ASCII
characters ’7’ + ’7’ we get (see the ASCII table in Appendix C):
00110111 = ’7’

00110111 = ’7’

======== +

01101110 = ’n’

which, in decimal, 55 + 55 = 110, which is the letter ’n’ in ASCII.
So, 7+7 = 14, while ’7’+’7’ = ’n’. The computer hardware does not
care what is in our heads and if it makes sense there! As the popular
saying goes, word processors are often WYSIWYG, ”what you see is
what you get”. Computer hardware is YWIYGI, ”you wanted it, you
got it!”. You asked for doing an add instruction with ASCII data and
that’s what you get.

23

3| Architecture of MIPS

We now come to the specific architecture of a MIPS computer. In this
chapter we will not bother ourselves with understanding how exactly
the described behavior is implemented in hardware. We just have to
know at this stage how the machine works logically. For that we have
to analyze the data flow diagram. Picture 7 shows this schematically.
It all evolves around the ALU (arithmetic logic unit), which is doing
the basic calculation. Or better to say ’logic operations’, it merely
being a sphisticated logic array. In a nutshell, this is what happens at
each step of a program:

• The program counter (PC) contains the address of the next in-
struction to be executed. The program counter is a 32-bit reg-
ister and can thus address 232 different addresses. The main
memory is organized in byte units, and thus MIPS can address
4 GB of main memory.

• The 32-bit contents of the 4 consecutive bytes of memory pointed
to by the PC are fetched and placed in the instruction register
(IR).

• The opcode (and possibly the function code) of the instruction
in the instruction register determine what is going to be per-
formed. These are the first 6 bits of the instruction and control
the hardware (CL standing for ’control logic’). It ’steers’ the
ALU into doing the correct logic operation. For instance, with
opcode 000000 the logic operation will be mathematically add

25

re
g
is

te
rs

R
s

R
t

In
s
tr

u
c
ti

o
n
 r

e
g
is

te
r

o
p
c
o
d
e

c
o
n
tr

o
l

lo
g
ic

 (
C

L
)

im
m

e
d
ia

te
/

4

P
ro

g
ra

m
 c

o
u
n
te

r
(P

C
)

C
L

C
L

m
a
in

m
e
m

o
ry

re
a
d

w
ri

te

a
d
d
re

s
s

C
L

re
a
d

R
d

A
L
U

C
L

H
I

L
O

fu
n
c
ti

o
n

Picture 7: Basic data flow diagram of the MIPS architecture

26

the two operands, Rs (’source register’) added to Rt (’target
register’) at the input of the ALU.

• The rest of the instruction code then determines which operands
will be used in the logic operation. This is also controlled by the
control logic. For instance Rs will be register $t0 and Rt will be
register $t1.

• One of the operands can also be ’immediate’, which means that
the value is part of the instruction and should be copied from
the last bits of the instruction register.

• The control logic implied in the instruction also specifies where
the resulting value, if any is generated, should be stored. This
is the destination register Rd.

• An operation can also be a simple advancing of the program,
making the program counter point to the next instruction, at
PC+4. If the program counter was not changed by a jump in-
struction, this instruction is executed and a new cycle starts

• Mostly the operands are registers of the register file. These con-
sist of 32 registers of 32 bits each and some additional functional
registers described in a moment.

• For some instructions the output is written to main memory
instead.

See Picture 8 for the format of the instruction register.
That is basically it. This is what we have to work with. With this

we have to do all our calculations. Writing programs in MIPS consists
of shoving information around, adding or subtracting things, doing
simple logical operations on data, etc. It is like shunting (or switch-
ing) rolling stock to form trains. Noteworthy, MIPS has a limited
instruction set. It is of the RISC architecture (reduced instruction set
computer), meaning that it has few instructions, but every instruction
is fast. This in contrast to CISC architectures (complex instruction
set computers), which has many instructions, but each relatively slow.

Simple as it may seem, when we start programming we soon real-
ize the thing is very powerful indeed. In the next chapter it will be

27

051015202531

opcode rs rt rd num funcR

opcode rs rtI

opcode rs immJ

opcode TYPE ft fs fd funcFR

opcode TYPE ftFI

26 21 16 11 6

imm

imm

Picture 8: Possible formats of the instruction register. Three dif-
ferent types, R, J and I. All instructions start with a 6-bit opcode, R
(register) instructions specify a source (rs), a target (rt) and a destina-
tion (rd) register. Some further specify a number (num), for instance
the amount of bits to shift, or specify a subfunction (func). I (imme-
diate) instructions have one of operands included in the instruction. J
(jump) instructions can specify a relative address in immediate form
in the instruction or use an address in a register (rs). The FR and FI
instructions are for floating point operations, to be discussed later

explained how with the simple 6-bit instruction set (26 = 64 different
instructions) we can implement advanced programs. We will see how
we can implement the concepts of higher-level programming languages
such as C and FORTRAN in MIPS instructions.

Before we do that, next to be described here in this chapter is the
register file. As said above, it consists of 32 registers of 32 bit. While
they can be labeled $0 until $31, mostly they are written in their
logical names, which indicate their function (see Table II):

• The first register is called $zero. The contents of this register are
hardwired to always contain 0, that is, 32 bits of 0. This might
not make sense at first sight, but don’t forget that MIPS is a
RISC architecture, and the engineers had to save on instructions.
As such, MIPS does not have, for example, an instruction for
copying the contents of one register to another. The way it is
implemented is by adding zero to a register and storing the result
of the ’calculation’ in the destination register. In other words,

move Rd Rs

28

Table II: MIPS registers

0 $zero 8 $t0 16 $s0 24 $t8

1 $at 9 $t1 17 $s1 25 $t9

2 $v0 10 $t2 18 $s2 26 $k0

3 $v1 11 $t3 19 $s3 27 $k1

4 $a0 12 $t4 20 $s4 28 $gp

5 $a1 13 $t5 21 $s5 29 $sp

6 $a2 14 $t6 22 $s6 30 $fp

7 $a3 15 $t7 23 $s7 31 $ra

is implemented with

add Rd Rt $zero

Fortunately, MIPS compilers understand this and we can freely
use the move instruction. We have to realize that this instruction
is not implemented in MIPS, but translated by the compiler and
is thus a so-called pseudo instruction.

• Register 1 is called $at and is reserved for the compiler. It is
used, for instance, to load a 32 bit address in two steps into a
register, storing the intermediate value in $at.

• Registers 2 and 3 ($v0 and $v1) are used by functions to return
values (similar to the C-instruction return(value)).

• Similarly, registers 4 through 7 ($a0 through $a3) are used to
pass information to functions as arguments, either directly as
integer values (passing by value) or as addresses to values in
memory (passing by reference).

• The next registers, 8 through 25 are ’freely usable’ registers,
which are divided into two groups, the so-called t-registers (8-15
and 24-25, $t0-$t7 and $t8-$t9) and s-registers (16-23, $s0-
$s7). The difference between the two is: who is going to be
responsible for temporarily saving the values on the stack when
functions are called, the calling code — the ’caller’ — or the
called code — the ’callee’. This will be better explained in the

29

section about functions in MIPS (Page 74 of Section 4.7 of Chap-
ter 4).

• The last registers are for the kernel (26 and 27; $k0 and $k1), the
global pointer (28; $gp), stack pointer (29; $sp), frame pointer
(30; $fp) and return address (31; $ra). The stack pointer and
return address are used when implementing functions and will
be discussed in Section 4.7 of Chapter 4. The kernel registers,
global pointer and frame pointer will not be discussed in this
book.

• Apart from these general 32-bit registers are two registers exclu-
sively used for arithmetic, namely HI and LO that are each 32
bit and store the results of integer multiplications and divisions.

Finally, there remains to be described the organization of memory
in MIPS architectures. A problem is introduced by the fact that the
CPU is organized as 32 bits (instruction register, program counter and
all other registers), but the main memory is 8-bit. That means that
two addresses are 8-bit apart. Because the communication bus of the
CPU with the memory is also 32 bits wide, a problem arises in that
we do not know how the information is stored into memory. Of the
4 bytes to store in a memory write, where does the most-significant
byte (MSB) and least-significant byte (LSB) go?

There exist two possibilities, as shown in Picture 9a that repre-
sents part of memory here shown semi-linearly. A write or read from
memory will communicate a complete line of this memory, for instance
from address 0 to address 3, each containing 8 bits. In so-called big
endian, the MSB goes to the lowest address, while in little endian this
memory contains the LSB. This naming comes from the country of
Jonathan Swift’s book Gulliver’s Travels. In that country the biggest
debate of politicians was how one should open an egg at breakfast in
the morning; opening it at the big end or at the little end. Of course,
it is a completely irrelevant debate, but both parties, the Big Endians
and the Little Endians alike, took it very serious.

Also for us it is completely irrelevant. As long as it is done con-
sistently, it makes no difference whatsoever if the architecture is big
endian or little endian — in fact, a software engineer does not even
have to worry about it; it is the job of the hardware engineer — but

30

0

4

8
C

+0 +1 +2 +�
MSB LSB

Big Endian

0

4

8

C

+0 +1 +2 +3

LSB MSB

Little Endian

0

4

8

C

+0 +1 +2 +3

MIJ

S M I T

H 0 0 0

0 0 0 21

0 0 1 410

0

4

8

C

+0 +1 +2 +3

MIJ

S M I T

H 0 0 0

0 0 0 21

0 0 1 410

Sending

byte-by-byte

age 21 age 21x2563

a)

b)

Picture 9: a) The difference between Big Endian and Little Endian
storage of information is caused by the fact of having a different size
CPU and communication bus architecture compared to that of main
memory. In this case, MIPS has a 32-bit architecture while the ad-
dressing distance of memory is 8-bit. In Big Endian the MSB is stored
at the smallest memory address, while in Little Endian this memory
element is occupied by the LSB. b) It goes wrong when two computers
of different endianness communicate byte-by-byte; the LSB becomes
the MSB, vice versa

a problem might arise when we communicate between computers of
different architectures. If we fetch (32-bit) information from memory
and start communicating it byte-by-byte to another computer of dif-
ferent endianness that fills its memory with it, things might go wrong.
Picture 9b shows an example. The big-endian computer on the left
has stored the information of JIM SMITH, age 21, office 260 into
memory (note the padding of the name by 0s; this in order to align the
data to addresses being necessarily a multiple of 4) and starts commu-
nicating it byte-by-byte to the little-endian computer on the right. It
sends the memory in a string, first address 0, then 1, etc. Thus: first a
J, then an I, etc. The little-endian computer receives a J and stores it
in address 1, etc. So far so good. At the end it has completely copied

31

the file of Jim Smith. Now the right computer wants to print the age
of Jim. The poor guy has suddenly aged quite a lot. The LSB (21)
has become the MSB, and Jim is now 21× 2563 = 352, 321, 536 years
old, and the building in which he works must be rather big, his office
being 4× 2563+1× 2562 = 67, 174, 400. We have to keep this in mind
when communicating with other computers.

32

4| MIPS assembler lan-

guage implementation

It is now finally time to start coding! In this chapter we will do that.
For that we have to define some key issues. We have to understand
what, in essence, is happening in our architecture hardware when we
run a program.

The hardware loads the contents of the 4 consecutive memory ad-
dressed, pointed to by the program counter (pc), into the 32-bit in-
struction register and executes it. Then it loads the next instruction
that is at pc+4 if the previous instruction did not cause a jump in the
program.

Now about the instructions themselves. MIPS is an example of a
RISC (reduced instructions set computer) architecture. This means
that the number of different instructions is rather limited. Each one is
fast, but not very powerful. MIPS has a total of only 64 different basic
instructions (see Appendix A). That means that specifying which
one to use takes 6 bits (26 = 64. Note that some instructions use
additional bits to define a sub-function, thereby leaving less space
for the rest of the instruction). As an example, addi is specified by
001000. This binary number that is in the beginning of the instruction
we call the ’opcode’, whereas the more human-readable addi is called
the ’mnemonic’. Our MARS compiler translates our mnemonics into
opcodes so that our life is a little easier. Imagine, in the old days
engineers did not have compilers and they had to write the opcodes
by hand instead of the mnemonics. You should appreciate the work

33

done by developers of compilers such as MARS.
The next part of the instruction is specifying the operands, of which

there can be either one, two or three. Imagine we want to add the
contents of register $t0 to $t1 and store it in $t2. These registers
are then the operands. The nomenclature is to call them the source,
the target and the destination operand, as in: adding the source to
the target and store it at the destination. The complete instruction
consists of the choice of operation (mnemonic) plus operands. Since we
have 32 registers available, specifying a register as operand takes 5 bits
(25 = 32). As we will see, instead of the value to be used being stored
in a register, the operand value can also be part of the instruction
itself. These instructions are called ’immediate’. An operand can also
be a something that is in main memory, the address of which can either
be specified as immediate or be contained in a register.

That brings us to the memory organization. We have to observe
that both the instructions as well as the data reside in the same main
memory. In fact, technically speaking, code is fully indistinguishable
from data; an instruction is 32 bit, the bus is 32 bit and a register is
32 bit. An instruction can be treated as data. As we will see, data
can also be memory addresses.

However, there is one small difference between data and code and
that makes that the organization of the memory follows a so-called Von
Neumann architecture. It means that program instructions and data
are separated in memory. Each residing in its own block of memory,
the former named the ’code segment’ of memory (normally starting
at address 0x00400000) and the latter the ’data segment’ (normally
starting at address 0x10010000). The code cannot change the code, it
can only change the data! That is, technically it is possible, but it is
a ’mortal sin’ in programmers ethics to do so. Data is never code and
code is never data. The code can only change contents of the registers
or of memory addresses in the data segment, never in the code segment.
Even if it is technically possible, an educated programmer will never
write a program that breaks this fundamental law in programming.

In MIPS, the two segments are identified by the assembler direc-
tives .data and .text for data segment and code segment respectively.
If we declare something in the data segment by writing a name (la-
bel) for it followed by a semicolon, for instance a word with the .word

directive, as in (note the semicolon)

34

myword: .word 64

the compiler reserves space in the data segment, places the (optional)
value (64 in this case) in it and remembers the label name (myword),
a pointer — an address; not the value itself — to it in a table it keeps
on the side while assembling our program.

Similarly, the use of a label in the code segment just stores the
label name and current position — the address in the code segment
of the next instruction — in the table that is kept on the side. For
example,
mycode:

li $t0, 4

will keep the address of instruction li $v0, 4 in the label-look-up
table.

Every time the assembler now encounters a reference to the label
(a pointer to data or code), it just uses (in most cases simply substi-
tutes) the value it has saved in this label-look-up table. After having
completed the assembling of our code and translated our instructions
into machine language, the names of the labels have been lost and the
label-look-up-table no longer exists.

Related, if we want to define a ’constant’, label a value, we can do
this with the .eqv assembler directive. As an example,
myvalue .eqv 64

It just remembers the combination label and value 64 in the table.
In this case, after our three declarations the label-look-up table now
looks like this, two pointers to memory (one to data and one to code)
and one value:

Label Value

myword 0x10010000

mycode 0x00400000

myvalue 0x00000040

Note that the declarations above are fully equivalent, they all just
create label-value pairs in the table, but the first one resembles the
declaration of a variable in the C language, while the latter resembles
the #define C-compiler directive defining constants. (The middle
one having no C equivalent). For MIPS it makes no difference. If
we wish, we can jump to our constant, j myvalue, which the compiler
might even accept if the value coincidentally is within the code segment

35

Table III: Some compiler directives

Anywhere

ignore rest of line (comment)
example: # this text will be ignored

Data segment

label: .word value(s) reserve 4 bytes in data segment
for every value given,
place value(s) in data segment,
store (label,address) in compiler table

example: numbers: .word 1, 2, 3

example: numbers: .word 0:129 # reserve 130*4 bytes space

.eqv label value store (label,value) in compiler table
example: .eqv four 4

label: .ascii "string" store ASCII string in
data segment and remember
(label,address) in compiler table

example: name: .ascii "Peter"

label: .asciiz ”string” same as above
but add NULL (0x00) to end of string

Code segment

label: store (label,next code address)
in compiler table

example: main:

range. (YWIYGI, ”you wanted it, you got it!”). Very likely though,
the compiler will warn us: ”Jump target word address beyond 26-bit
range”, or so. (Actually, the compiler used by the author, MARS, does
refuse to compile this turd of programming).

36

Input/output (system calls) and memory ac-
cess

A computer without output is as silly as the concept of WOM (write-
only memory). A computer without input is strange, but possible, but
without output is silly. Therefore, we first have to learn to generate
output. As a tradition in programming, the first program we write in a
new language will print ”Hello world!” For that we need to have access
to input and output functions that in the MARS simulator of MIPS
are part of the environment; no need to write them ourselves. These
are so-called system calls which are summarized in Appendix C. The
method consists of choosing the system call we want by placing the
correct number of the system call in register $vo, place any arguments
in the a-registers, and then issue a syscall. As Appendix C shows,
printing a string is system call number 4 and we have to place the
address of the null-terminated string in register $a0. That’s all there
is to it. The program below, hellow.asm, shows how this works. First
define a null-terminated string by the definition .asciiz in the data
segment, then we prepare the registers and issue a syscall. Note that
to cleanly end the program, we issue a ’syscall 10’, which will print
the message

”-- program is finished running --”

and stop execution.

##

#

MIPS assembler program that prints "Hello world!"

#

##

#data segment with ’variables’; starts at 0x10010000

.data

hellow: .asciiz "Hello world!"

#code segment with instructions; # starts at 0x00400000

.text

start:

37

li $v0, 4

la $a0, hellow

syscall # 4: print string

#terminate program:

stop:

li $v0, 10

syscall

Output:

Hello world!

-- program is finished running --

See Picture 10 how this looks in the MARS environment. Analyzing
the program we see that assembler does not have any variables. The
only thing assembler has is values and addresses. When we ’declare’ a
variable such as hellow, what, in fact, is done is

• Space is reserved in main memory (on the heap) enough to store
the data

• The assembler remembers a pointer to this space and saves this
in a table, together with the name of the label we have given to
it

• Every time we use the label in further reference, the label is
looked up in the table and the compiler substitutes it with the
value

In this case the label-look-up table looks like this (see panel Labels in
Picture 10):

Label Value

start 0x00400000

stop 0x00400010

hellow 0x10010000

The first two labels are pointers to instructions in the code segment.
The last is a pointer to the string in the data segment. When the
instruction la $a0, hellow is encountered, this is replaced by the

38

Picture 10: Example of the compiled and ran program hellow.asm

compiler with a li $a0, 0x10010000, loading the value directly into
the register. We will get back to this later. Let us here analyze basic
instructions of MIPS. Starting with the simplest of all, move.

Moving around — shunting — data in the registers is done by
the move instruction (move), which might be confusing, since it does
not actually move anything, but rather copies things. (The source
register retains the original value as well). The move instruction is a
pseudo instruction in that it is not part of the MIPS instruction set,
but MARS implements it with other MIPS instructions,

• move $t0, $t1: copy the contents of $t1 to $t0

(= add $t0, $t1, $zero)

39

If we want to directly load a number into a register, we can use
’load immediate’, li. In that case, the value to store in the register is
part of the instruction, this value we call immediate.

• li, $t0, value

store the 32 bit value into register $t0

This needs some explanation. Since specifying one of the 64 opcodes of
MIPS takes 6 bits, and specifying one of the 32 registers as destination
takes 5 bits, storing directly a value of 32 bits into a register would take
6+5+32 = 43 bits. That obviously does not fit into the 32 bits of the
instruction register. The solution is that the compiler translates the li
instruction into two separate instructions: first loading the upper part
of value into the temporary register $at by ’load upper immediate’
(lui) and then bitwise OR’ing the lower part of the value to it by ’or
immediate’ (ori), storing the final result in the destination register
($t0 in this case):
li $t0, 0x12345678

translates into
lui $at, 0x00001234

ori $t0, $at, 0x00005678

Note that if the value to load is less or equal than 0x0000FFFF the lui
0x00000000 is redundant and a li 0x0000abcd, for example, trans-
lates into a single instruction,
ori $t0, $zero, 0x0000abcd

or ’add immediate unsigned’, which is effectively the same,
addiu $t0, $zero, 0x0000abcd

The instruction li is therefore also a ’pseudo instruction’. In this case
the MARS compiler translates it into one or two MIPS instructions.
For reasons of legibility of the program in other cases, the exact same
pseudo instruction is also called ’load address’,

• la, $t0, value

exactly the same as ’load immediate’ (li), but pronounced as
’load address’

The instructions are to have access to the code segment in main
memory. While many things can be done at the registers — and
working with registers is much faster than working with main memory!

40

— sometimes we will want to store our data. Moreover, we have only
32 registers available, which is rather few. With addresses of 32 bits,
each capable of storing 8 bits of information, we can store 232 = 4
GB of data. So, we will load things from memory, calculate things as
much as is possible in the fast registers and then store the end result
back in memory. We thus need instructions for loading and storing
information. The basic instructions are lw and sw, ’load word’ and
’store word’, respectively.

• lw, $t0, addressvalue

load the 32-bit contents of the 4 consecutive addresses pointed
to by addressvalue into register $t0

• lw, $t0, offset($t1)

load the 32-bit contents of the 4 consecutive addresses pointed
to by the pointer in $t1 plus offset into register $t0

• sw, $t0, addressvalue

store the contents of register $t0 into the 4 consecutive addresses
pointed to by addressvalue

• sw, $t0, offset($t1)

store the contents of register $t0 into the 4 consecutive addresses
pointed to by the pointer in $t1 plus offset

Also smaller sized load and store instructions exist: sh, lh, for storing
and loading halfwords (16 bits) and sb, lb, for storing and loading
bytes (8 bits).

Now let’s take a look again at our compiled program hellow.asm,
see Picture 10. We see that the compiler has translated our

li $v0, 4

into

addiu $2, $0, 0x00000004

which accomplishes the desired effect, adding 4 to 0 and placing it in
register $2, which is $v0, as can be seen in the right side of the image.
Indeed, the program shows that at finishing the program, the contents
of $v0 are 0x0000000a which were placed there by a another li to
invoke a system call syscall 10 to end the program.

41

Now, let’s look at this specific instruction li $v0, 4 that was
translated into addiu $2, $0, 0x00000004. (See the figure; the col-
umn named ’Basic’). If we look in the appendix with MIPS instruc-
tions (Appendix A), we see that addiu has an opcode equal to 001001,
after which follow five bits for the source register, five bits for the tar-
get register and 16 bits for the immediate value: the source register
is $zero, or $0 which is in 5 bits equal to 00000 and the target reg-
ister is $v0 ($2), which is 00010, the immediate value is 4, which is
0000000000000100, so the final instruction is:

mnemonic source target immediate
addiu $zero $v0 4

001001 00000 00010 0000000000000100

Regrouping in units of 4 bits:
0010 0100 0000 0010 0000 0000 0000 0100

= 0x24020004

which is the compiled code, as can be seen in the figure (in the col-
umn named ’Code’). It is placed in the four addresses starting from
0x00400000 (see the column named ’Address’). When the program is
run, the program counter is set to this value and the hardware fetches
this addiu instruction, places it in the instruction register and executes
it. That is, it latches the values of the register $0 and the immediate
value into the ALU, adds the two operands and latches the result into
register $v0. It then adds 4 to the program counter.

The next two compiled code instructions (la that is translated into
lui plus ori) load the address (0x10010000) of the text ”Hello world!”
of the data segment into register $a0 (=$1). As can be seen in the
Data Segment panel, the text is stored as (hexadecimal)
6c 6c 65 48 6f 77 20 6f 21 64 6c 72 00

l l e H o w o ! d l r [eos]

([eos] = string terminator, 00), which gives us an indication of how
data is represented and stored by the MARS/MIPS environment and
architecture.

At the end of the program we can verify in the Registers panel
that:

• The program counter is pc = 0x00400018, which is the address
of the last syscall plus 4

• The value of $zero is still 0, since it is hard wired

42

• The value of $v0 is 10, set there for the last syscall (terminate
execution)

• The value of $a0 is 0x10010000, still pointing to the string ”Hello
world!”

As can be seen, what at first seems rather complicated, turns out to
be very simple after all.

Arithmetic

Basic arithmetic in MIPS consists of simple mathematical operations
of addition (add), subtraction (sub), multiplication (mult) and divi-
sion (div). Multiplying two 32-bit numbers can, in principle, result
in a 64-bit integer. Such a result does not fit in a 32-bit destination
register. To avoid this problem, MIPS engineers added two registers
to the 32 standard 32-bit registers described before, namely HI and
LO. These will contain the first 32 and last 32 bits of the multiplica-
tion, respectively. A similar problem occurs in divisions: the integer
division result is stored in LO, while the remainder of the division is
stored in HI. These can be moved to normal registers by instructions
move-from-low (mflo) and move-from-high (mfhi).

Additionally, the ALU can perform some basic logic operations or,
nor, and, xor). These mathematical and logic operation all take three
operands: two input operands, of which one can be immediate (con-
tained in the instruction) and one output register. (Question: why
would it not make sense to have both input operands of the imme-
diate type?). All these operations are straightforward and will not
be explained here further, with the only comments that subtractions
do not have an ’immediate’ version (again: why not?) and that all
mathematical operations can be done with either signed or unsigned
numbers.

Apart from this, the ALU can shift the bits of a register left or
right a number of places determined either by the immediate value
or by the contents of a specified register, and can store the result in
another register. They exist in two variants. The difference between
the variants, that are called ’logic’ and ’arithmetic’, is that the former
merely shifts the bits a certain amount of places, filling the created

43

gaps with 0s, while in the arithmetic variants the high-order bits are
sign extended, thus a right shift fills the utmost left bits with a copy
of the utmost left bit before shifting; if, before shifting, the MSB
was 1, they are filled with 1s, otherwise they are filled with 0s. This
way, arithmetic shifting right is like divisions by 2, also for negative
numbers. Note that left logic shifts and left arithmetic shifts are the
same and therefore, only a logic instruction (mnemonic) exists.

An example of the effects of the three versions a 1-bit shift oper-
ation on a positive and a negative operand is given here in the table
below:

mnemonic operand decimal result decimal
srl 1 0x00000004 4 0x00000002 2

0000...0100 0000...0010

sra 1 0x00000004 4 0x00000002 2

0000...0100 0000...0010

sll 1 0x00000004 4 0x00000008 8

0000...0100 0000...1000

srl 1 0xfffffffc -4 0x7ffffffe 2147483646

1111...1100 0111...1110

sra 1 0xfffffffc -4 0xfffffffe -2

1111...1100 1111...1110

sll 1 0xfffffffc -4 0xfffffff8 -8

1111...1100 1111...1000

Shift instructions where the number of bits to shift is not an imme-
diate value contained in the instruction, bur given in a register instead,
are specified by an extra ’v’. All variants of shifting instructions have
opcode 000000, but are differentiated through the specification of the
function code, which for these instructions is the last 6 bits of the in-
struction. In the list here below, ’s’ means shift, ’r’ means right, ’l’
means left or logic, ’a’ means arithmetic, ’v’ means value (contained
in a register).

44

mnemonic opcode function direction, type, value is
sll 000000 000000 left, (logic & arith.), immediate
srl 000000 000010 right, logic, immediate
sra 000000 000011 right, arithmetic, immediate
sllv 000000 000100 left, (logic & arith.), in register
srlv 000000 000110 right, logic, in register
srav 000000 000111 right, arithmetic, in register

Sometimes we want to have the bits that leave the register on one
side reappear on the other side. Such rotate instructions are not part
of MIPS, but our MARS compiler can translate the pseudo-code easily

mnemonic opcode function direction, type, value is
rol - - rotate left
ror - - rotate right

As an example, rol $t1, $t0, 4 is implemented as
srl $at, $t0, 28

sll $t1, $t0, 4

or $t1, $t1, $at

which indeed does the job.

Exercises:

1. Write a MIPS program that asks two numbers
and prints their sum, difference, product and
quotient.

2. Write a MIPS program that asks a number and
calculates the number multiplied by 10.5, with
this multiplication not done by a mult instruc-
tion, but by shifting and summing.

Jump and branch. (goto, if . . . then . . .)

The next instructions we will look at are simple unconditional jumps
and conditional jumps (see Picture 11). Most modern fourth-generation
programming levels do not use this concept, with maybe the only ex-
ception being BASIC. The reason is that a program rapidly turns out

45

to be spaghetti, and where the idea in programming is to write pro-
grams in as-close-as-possible-to English, writing in Italian is highly dis-
couraged. The BASIC equivalent of a jump instruction is GOTO label,
and the conditional jumps are IF condition THEN GOTO label. In
the latter, the program can continue at two different paths, and there-
fore this technique is called ’branching’.

• j label

This simply puts the value of the address label into the program
counter: label → pc

Note that the jump addresses are part of the instruction and these
instructions are thus of the ’immediate’ type described before. Since 6
bits are used for specifying the operation (the ’opcode’), only 26 bits
remain for the address. MIPS developers were very smart. Realizing
that instructions are always 4 bytes apart, the last two bits of the
address are redundant (always 00; in some cases we have to ’align’ the
code with nop — no-operation — instructions) and are thus implicit
in the address specified. Still, that makes 28 bits of address, and only
228 = 256 MB addressable of the total 4 GB of memory. All addresses
are thus relative to the program counter (pc) when jumping. To be
more precise, the address jumped to is the first 4 bits of the actual
program counter (p) plus the 26 immediate bits (i) of the instruction
multiplied by 4 (left-shifted two bits).

ppppiiiiiiiiiiiiiiiiiiiiiiiiii00 → pc

This way, the first 4 bits of the program counter represents something
like a ’page’ we are working on and for that reason we call this tech-
nique ’paging’. (Long) jumping to a different page has to be done in a
different way. For example placing an address in a register and issuing
a jump-on-register (jr).

Conditional jumping is called ’branching’, for which we have this
set of instructions:

• branch-condition label

This puts the value of the address label into the program counter
when the condition, comparing two registers, is true, otherwise
it defaults to adding 4 to the program counter:

46

j������
(��	onditional)

condition

no
yes

branch���
(conditional)

Picture 11: Difference between (unconditional) jumping and (condi-
tional) branching

condition=true: label → pc

condition=false: pc+4 → pc

The only two possible branch instructions are:
beq $t0, $t1, addr: Branch to addr if operands are equal
bne $t0, $t1, addr: Branch to addr if operands are not equal

All other branching variants are pseudo instructions:
blt $t0, $t1, addr: Branch to addr if $t0 < $t1

bgt $t0, $t1, addr: Branch to addr if $t0 > $t1

ble $t0, $t1, addr: Branch to addr if $t0 6 $t1

bge $t0, $t1, addr: Branch to addr if $t0 > $t1

beqz $t0, addr: Branch to addr if $t0 = 0
bnez $t0, addr: Branch to addr if $t0 6= 0
bltz $t0, addr: Branch to addr if $t0 < 0
bgtz $t0, addr: Branch to addr if $t0 > 0
blez $t0, addr: Branch to addr if $t0 6 0
bgez $t0, addr: Branch to addr if $t0 > 0

As an example,
beqz $t0: Branch if $t0 = 0

is implemented as
beq $t0, $zero

47

And
bgt $t0, $t1: Branch if $t0 > $t1

is implemented in two instructions as
slt $at, $t0, $t1

bne $at, $zero

Here the instruction slt is writing the condition — ’less-than’ — in a
specified register

• slt $t0, $t1: Set (to 1) if $t0 is less than $t1 (set to 0 other-
wise).

An instruction that has no ’greater than’ or ’equal to’ variants (I leave
it to the reader to think why not), but has an ’immediate’ version and
can be for both signed and unsigned numbers: slt, slti, sltu, and
sltiu.

The jump-to addresses for these conditional jump instructions work
differently compared to the addresses of unconditional jumps (j) de-
scribed earlier, yet also uses the same memory efficiency 2-bit-shifting
technique. Conditional jump addresses are relative to the actual cur-
rent value of the program counter, which, immediately after fetching
the instruction from memory, is already updated to the next instruc-
tion at pc+4. So, if jumping, the program continues at (address+4)

+ immediate×4, with address the address of the branching instruc-
tion. For simple jumps described earlier, the immediate value is 26
bit and addresses span 226+2 = 256 MB, as shown above. For condi-
tional jumps, the specification of the registers to compare take up an
additional 10 bits (5 bits for each register) and the immediate address
specification is thus limited to only 16 bit, making the jump addresses
in these instructions span only 216+2 = 256 kB; conditional jumps are
relatively local. If we need longer jumps, we need to make a condi-
tional jump to an instruction with an unconditional jump. If we need
even longer jumps, we need to place the full 32-bit address in a regis-
ter and issue a jump-register instruction (jr), which simply copies the
32-bit contents of the register to the 32-bit program counter.

Some final remarks about conditional branching. First of all, note
that there does not exist in assembler an ’else’ clause, nor does the
concept of multiple choice (like ’switch’ in C, or ’case ... of’ in
Pascal) exist. All conditional branching in assembler is either jumping
to that address, or continuing with the next instruction at pc+4.

48

Finally, note here the important difference between high level lan-
guages such as C:
if (t0==t1)

instructions-when-true

and assembler:
beq $t0, $t1, label

instructions-when-false

They are in opposite order.
Here is a worked-out example of branching. It inputs two numbers

and prints ”same” if they are equal, and ”different” otherwise.

Source code:

###

MIPS assembler program that shows how

to implement branching

###

.data

number: .asciiz "Give a number: "

difftxt: .asciiz "Numbers are different\n"

sametxt: .asciiz "Numbers are the same\n"

.text

la $a0, number

li $v0, 4

syscall # print string

li $v0, 5

syscall # read int into $v0

move $t0, $v0

li $v0, 4

syscall # print string

li $v0, 5

syscall # read int into $v0

move $t1, $v0

li $v0, 4

beq $t1, $t0, same # if ($t1==$t0)

different: # false

la $a0, difftxt

syscall

j terminateprog

same: # true

la $a0, sametxt

49

syscall

terminateprog:

li $v0, 10

syscall # terminate program

Output:

Give a number: 5

Give a number: 6

Numbers are different

-- program is finished running --

Loops; (for, while, do-while)

In high-level programming we normally have to our disposition the
concept of loops, and mostly they can be divided into

• for: used for loops that have a number of iterations well known at
the beginning of the loop and they are countable (thus integers
are used).

• while-do: used for loops that have an a-priori undetermined num-
ber of iterations (as in: while input chars available do), and
used for loops that use floating point numbers. The condition is
checked in the beginning of the loop, so it might occur that not
a single iteration is done and none of the instructions within the
loop are executed.

• do-while: the same as while-do, but the condition is checked
at the end of the loop, so the instructions within the loop are
executed at least once.

The concept of loops is not available in assembler, but it is not very
difficult to implement with the branching instructions learned before.
The code below gives an example of how to implement a for loop,
printing n times a certain text.

Source code:

50

###

MIPS assembler program that shows how

to implement a for loop

n times printing a text

###

.data

prompt: .asciiz "Give a number (n): "

hellow: .asciiz "Hello world!\n"

.text

la $a0, prompt

li $v0, 4

syscall # print prompt

li $v0, 5

syscall # read int n into $v0

move $t0, $v0

we will implement the following C code:

for (i=0; i<n; i++)

printf("%s", benfica);

i is stored in $t1

n is stored in $t0

la $a0, hellow

li $v0, 4

move $t1, $zero # initial value of i=0

startloop:

beq $t1, $t0, exitloop # exit if end value is reached

syscall # printf

addi $t1, $t1, 1 # i++

j startloop # go back to start of loop

exitloop:

li $v0, 10

syscall # terminate program

Compiled program:

51

Address Code Basic Line: source code

0x00400000 0x3c011001 lui $,0x00001001 12: la $a0, prompt
0x00400004 0x34240000 ori $4,$1,0x00000000
0x00400008 0x24020004 addiu $2,$0,0x00000004 13: li $v0, 4
0x0040000c 0x0000000c syscall 14: syscall
0x00400010 0x24020005 addiu $2,$0,0x00000005 15: li $v0, 5
0x00400014 0x0000000c syscall 16: syscall
0x00400018 0x00024021 addu $8,$0,$2 17: move $t0, $v0
0x0040001c 0x3c011001 lui $1,0x00001001 23: la $a0, hellow
0x00400020 0x34240010 ori $4,$1,0x00000010
0x00400024 0x24020004 addiu $2,$0,0x00000004 24: li $v0, 4
0x00400028 0x00004821 addu $9,$0,$0 25: move $t1, $zero
0x0040002c 0x11290003 beq $9,$8,0x00000003 27: beq $t1, $t0, exitloop
0x00400030 0x0000000c syscall 28: syscall
0x00400034 0x21290001 addi $9,$9,0x00000001 29: addi $t1, $t1, 1
0x00400038 0x0810000b j 0x0040002c 30: j startloop
0x0040003c 0x2402000a addiu $2,$0,0x0000000a 32: li $v0, 10
0x00400040 0x0000000c syscall 33: syscall

Output:

Give a number: 5

Hello world!

Hello world!

Hello world!

Hello world!

Hello world!

-- program is finished running --

The compiled code is also shown here to highlight the relative
branching address method described in the previous section. Espe-
cially to note here is the beq instruction at address 0x0040002c on
line 27: the immediate value in the instruction is only 3. Therefore
the program (if $t0 equals $t1) jumps to (0x0040002c+4) + 4×3 =
0x0040003c, just beyond the for loop.

Exercise:

Write a MIPS program that calculates the first 100
prime numbers.

Arrays and structures

A very useful concept in a high-level programming language is the
joining of data in arrays or structures. We can imagine a mathematical

52

memory:

a

ar
p����

�00

+4x(ix3+j)

a01

a02

a10

a22

a11

a12

a20

a21

a00 a01 a02

a10

a22

a11 a12

a20 a21
()

mathematics:

aij

e
le

m
e
n
t s

iz
e

lin
e
 s

iz
e

Picture 12: An array in programming is a mapping of a multi-
dimensional object, such as a mathematical matrix shown here,
to a linear memory ’vector’. We have to calculate the posi-
tion of the element in memory based on its indexes. The ad-
dress of element aij can be found as: address = arraypointer

+ elementsize×(i×elements_per_line + j)

vector, or matrix of elements, all of the same type, or a collection of
data, a ’file’ of a person in a database. From programming lectures
we know that data of identical type are stored in arrays, where each
element has an index, or indexes.

In assembler the concept of arrays and structures does not exist.
Our program thus has to calculate where all the elements of data
reside in memory. We have to map the structure of our data onto
a one-dimensional array of our linear memory (see Picture 12). This
is a simple calculation if we know the size of each element of our
data. As an example, if we have a vector of words (4 bytes each),
then the address of element i, assuming the first element is element
0, can be found as vectoraddress+i×4. A two-dimensional array
can be implemented as well, but the calculations are slightly more
complicated. Here is an example that checks which point in space,
with coordinates (x,y,z), has the smallest sum of coordinates x+y+z.
We assume that the data are placed in memory as x0, y0, z0, x1, y1,
z1, x2 . . . starting from address array. This means that to find the
coordinate x of point i in space, we calculate array+3×4×i. The ’4’
comes from the size of an element (1 word is 4 bytes), the ’3’ from the

53

size of a line in the matrix (1 point has 3 coordinates). For coordinate
y and z we add 4 and 8 to this, respectively.

Source code:
###

#

MIPS assembler program that shows how to implement an array

#

###

.data

mintext: .asciiz "minimum sum: "

indextext: .asciiz " at index: "

an array of 10 times (x,y,z)

array: .word

1, 10, 18, # 0

2, 2, 20, # 1

13, 13, 1, # 2

20, 20, 100, # 3

8, 9, 10, # 4

11, 12, 1, # 5

20, 1, 2, # 6

18, 8, 8, # 7

9, 9, 3, # 8

10, 9, 5 # 9

.text

t8 stores minsum

li $t8, 999999

li $t0, 0

li $t1, 10

startloop:

beq $t0, $t1, exitloop

la $a0, array

mul $t3, $t0, 12

add $a0, $a0, $t3 # a0 = array + 3*4*i

lw $t4, 0($a0) # x_i

lw $t5, 4($a0) # y_i

add $t4, $t4, $t5

lw $t5, 8($a0) # z_i

add $t4, $t4, $t5 # t4 = x_i + y_i + z_i

bgt $t4, $t8, continue #jump if sum is larger than old minimum sum

#if not, then new minimum sum found

54

move $t8, $t4 # save new minimum

move $t7, $t0 # save index

continue:

addi $t0, $t0, 1 # increment i

j startloop

exitloop:

li $v0, 4

la $a0, mintext

syscall

li $v0, 1

move $a0, $t8

syscall

li $v0, 4

la $a0, indextext

syscall

li $v0, 1

move $a0, $t7

syscall

#terminate program

li $v0, 10

syscall

Output:

minimum sum: 21 at index: 8

-- program is finished running --

A structure is a set of data of (possibly) different type. Yet, the
technique of finding a field of our ’struct’ is very similar to finding an
element in an array. The example below makes this more clear (see
also Picture 13):

Source code:

###

#

MIPS assembler program that shows how to implement a struct

#

###

.data

nameprompt: .asciiz "name:"

55

memory:

m�����ct
name

�������
��g���

c���

+260
����

Picture 13: An example of a structure (set of informations of different
types) used for the programming example

ageprompt: .asciiz "age:"

genderprompt: .asciiz "gender:"

cityprompt: .asciiz "City:"

mystruct: .word 0:129

name: 256 chars ASCII = 64 word

age: 1 byte = 1 word

gender: 1 char = 1 word

city: 256 chars ASCII = 64 word

#--------------------------+

130 words = 520 bytes

.text

li $v0, 4

la $a0, nameprompt

syscall

la $a0, mystruct

li $a1, 256

li $v0, 8

syscall # read string. $a0,= string address, $a1 = max length

li $v0, 4

la $a0, ageprompt

syscall

li $v0, 5

56

syscall # read int into $v1

la $a0, mystruct

addi $a0, $a0, 256 # we have to calculate where the age int is

in the struct

sw $v0, 0($a0)

li $v0, 4

la $a0, genderprompt

syscall

la $a0, mystruct

addi $a0, $a0, 260 # we have to calculate where the gender byte is

in the struct

li $a1, 10 # it reads max 9 chars. Note: It may overwrite the

adjoining city string!

li $v0, 8

syscall # read string

li $v0, 4

la $a0, cityprompt

syscall

la $a0, mystruct

addi $a0, $a0, 264 # we have to calculate where the city string is

in the struct

li $a1, 256

li $v0, 8

syscall # read string. $a0,= string address, $a1 = max length

#terminate program

li $v0, 10

syscall

Output:

name:John Doe

age:23

gender:m

City:Amsterdam

-- program is finished running --

Floating-point numbers

So far all the calculations were done with integer numbers, either ex-
clusively positive (N) or both positive and negative (Z). However,

57

from mathematics we know that there also exist real numbers (R).
And sometimes we would like to do calculations with these numbers.
It then becomes important to realize that our computer is a finite state
machine and registers and memory contents have a finite number of
possible values. Whereas in integer calculations this limitation is, to
a certain point, rather irrelevant and only limits the range of calcu-
lations, for floating-point calculations these limitations are severe and
we have to keep them in mind. A single float of 32 bits can, for in-
stance, take only 232 (approx. 4 billion) different values, there where
the number of real numbers is infinite, even if we were to limit the
range of the numbers to an interval (for instance only between 0 and
1, an interval that contains an infinite number of numbers). Our cal-
culations are bound to be incorrect. But how incorrect are they going
to be? And is that acceptable, or not?

In science lectures we have learned the so-called scientific notation,
which is a way of writing a number as a product of a fraction (f) and
an exponent of 10,

n = f × 10e,

for instance 3.28×1021. Because many computers were limited to writ-
ing text with ASCII-only, this scientific notation was also often written
in ASCII in so-called engineering notation, n = 3.28E21. The word-
ing ’floating point’ is used in computer jargon, because the decimal
point can ’float’ between the digits, as in,

3.28× 1021 = 0.328× 1022 = 32.8× 1020.

Very important to note at this moment is that any number that has
a finite number of digits can always be described with only integers,
without the floating point, by just floating the point in the fraction
until its mantissa (the part after the floating point) contains only zeros
(and can thus be omitted). As an example,

3.2800× 1021 = 328× 1019,

which is described by f = 328 and e = 19, both integer numbers. For
this reason, we can implement floating point numbers with finite-state
integer machinery such as our MIPS architecture.

In the same way, we can also always ’normalize’ numbers by adjust-
ing the exponent in such a way that the fraction falls within certain

58

limits, for instance by forcing the part of the fraction before the float-
ing point to be one non-zero digit, effectively limiting the range of
the fraction between 1.000. . . and 9.999. . . , or in another scheme by
limiting it to 0.100. . . and 0.999. . . . Such normalization will come in
very handy because for binary numbers limiting the numbers in the
same way from 1.000. . . to 1.111. . . means that the numbers always
start with ”1.”, so that part can be omitted because it is information
that is redundant!

Now lets take a specific example of floating point numbers with 3
digits for the fraction and 2 digits for the exponent, both also including
a sign. What we can say is:

- The largest negative number is −999× 1099

- The smallest negative number is −001× 10−99

- Zero: ±000×10±xx = 0 (there are many ways of writing zero)
- The smallest positive number is +001× 10−99

- The largest positive number is +999× 1099

This defines 7 regions in the number scale. As can be seen, and as
marked in Figure 14, some numbers are unattainable with this num-
ber system. If the result of a calculation is too big and falls beyond
±999× 1099 this is called ’overflow’. A similar problem occurs when
the number is too small and falls into the ’underflow’ region. Most
calculators treat this number simply as 0 in order not to generate an
error.

Note that the absolute error in the numbers — the distance be-
tween two adjacent numbers — is varying from small numbers to big
numbers, namely from 1 × 10−99 to 1 × 1099, but the relative error
is rather constant over the entire range, namely about 1/1,000. Still,
this error makes that our floating-point calculations on a computer are
not (always) exact. The rounding introduces errors.

We can also invent other combinations of number of digits for the
fraction and the exponent. If we increase the number of digits for the
fraction and less for the exponent, the relative error of our calculations
drop, but, as a price to pay, the range of our numbers also drops. For
instance, for a system with 4 digits for the fraction and 1 for the
exponent:

- The largest negative number is −9999× 109

- The smallest negative number is −0001× 10−9

- Zero: ±0000× 10±x = 0

59

0

o !"
#o$

o !"
#o$

under

#ow

+9
9

+9
99
E+

99

99

Picture 14: The seven ranges of base-10 floating-point numbers with
3 digits for the fraction and two for the exponent. When the number
is too big (on either side), it is called ’overflow’. When it is too small
it is called ’underflow’, which is normally mapped to 0.

- The smallest positive number is +0001× 10−9

- The largest positive number is +9999× 109

with a relative error of 1/10,000.

❉

The IEEE 754 standard for floating point numbers was developed
to make it possible for engineers from various architectures talk with
each other. It is based on fractions and exponents that are based on
the binary number system, so

n = f × 2e,

with both f and e binary integers that were described before. IEEE
754 has the following features:

single:
1 8 23
± ...exp... ...frac...

double:
1 11 52
±exp......frac......

• It has three formats with different total bit-lengths: single (32
bits), double (64 bits), and extended (80) bits. As we will see,

60

MIPS has hardware co-processors that can perform dedicated
floating point operations with the first two types of numbers.
Calculations with extended numbers have to be emulated with
software.

• One sign bit, at the position of the MSB. 0 = positive, 1= neg-
ative.

• The exponent is 8 bits long for singles and 11 bits long for dou-
bles.

• The exponent is written in the format ’excess 127’ (for singles),
and ’excess 1023’ (for doubles). It means that the bits that
represent the exponent are a binary positive integer to which
127 is subtracted (or 1023) to find the exponent used in the
calculation. Example: If the exponent pattern is exp=00001001,
this is equal to 9, so e = 9 − 127 = −118. (The bit pattern
11111111 is reserved for special use).

• The fraction bit pattern (frac) contains 23 bits (single) or 52
bits (double).

• Normalized fractions start with ”1.”, so it needs not be written,
it is ’implied’; the bits only represent the digits after the floating
point. This bit pattern f plus the leading ”1.” we call the sig-
nificand: s = 1.f ; the final number thus being (for singles and
doubles respectively)

n = ±(1.frac)× 2exp−127,

n = ±(1.frac)× 2exp−1023.

(Note the strange mixed writing of the above, binary for the sig-
nificant and decimal for the exponent. It is done for clarity; not
many people would understand 10exp−01111111 correctly, think-
ing it is a base-10 number). The significand is a number between
1.000... and 1.111....

As an example, the hexadecimal bit pattern 0x3f000000 is:

3 f 0 0 0 0 0 0

0011 1111 0000 0000 0000 0000 0000 0000

61

grouping the bits:

sign exp frac

0 01111110 00000000000000000000000

which translates into
sign: +
exponent: exp − 127 = 126− 127 = −1
significand: 1.frac = 1.0
So the number is: +1.0× 2−1 = 0.5 (base 10).
Special bit patterns exist for: denormalized numbers in general, zero,
infinity and NaN (not-a-number, for instance 1/0):

Denormalized:
sign exp frac

± 00...00 — non-zero —

Zero:
sign exp frac

± 00...00 000000...000000

Infinity:
sign exp frac

± 11...11 000000...000000

NaN:
sign exp frac

± 11...11 — non-zero —

(Denormalized numbers use excess-126 instead of excess-127 for the
exponent).
The smallest normalized number is thus (exp=1, frac=0): n = 1.0 ×
21−127 = 1.175× 10−38.
The smallest denormalized number is (exp=0, frac=0000...0001 [22
zeros]): n = 2−23 × 20−126 = 2× 2−149 = 1.401× 10−45.
The largest normalized number is (exp=11111110, frac=11...11):
n ≈ 2× 2254−127 = 2× 2128 = 3.403× 1038.

❉

Exercises:

1. What are the smallest and largest double floating
point numbers?

2. What is the bit pattern for the single floating

62

point value 9.0?

3. What is the bit pattern for the single floating
point value 6.125?

4. What is the bit pattern for the single floating
point value −5/32?

5. What single floating point value is represented
by the bit pattern 0x42e48000?

6. What single floating point value is represented
by the bit pattern 0x00800000?

7. What single floating point value is represented
by the bit pattern 0xff800000?

8. What single floating point value is represented
by the bit pattern 0xff800001?

Answers: 2: 0x41100000, 3: 0x40c40000, 4: 0xbe200000,
5: 114.25, 6: 1.175× 10−38, 7: −∞, 8: NaN.

❉

Most MIPS architectures nowadays have dedicated co-processors to
do the floating-point calculations. The co-processor is similar to the in-
teger processor. It also has 32 registers, each 32 bits wide, $f0. . . $f31.
These can thus store 32 single-precision floats, or 16 double-precision
floats. In the latter case, two consecutive registers store the number.
So, for instance, the pair {$f4,$f5} can store a 64-bit double-precision
float. (The syntax for such instructions is only writing the first of the
two registers, which should always be an even-numbered register; $f0,
$f2, etc.)

It comes with a set of instructions specifically for floating point
operations and exchanging bit patterns between the float-registers and
regular int-registers.
The first group is main memory access:

• lwc1 $f0, $t4: copy 4-byte contents of address pointed to by
$t4 into register $f0 of the co-processor.

• lwd1 $f0, $t4: copy 8-byte contents of address pointed to by
$t4 into registers {$f0,$f1} of the co-processor.

63

• swc1 $f0, $t4: copy 4-byte contents of register $f0 of the co-
processor into consecutive addresses pointed to by $t4.

• swd1 $f0, $t4: copy 8-byte contents of registers {$f0,$f1} of
the co-processor into consecutive addresses pointed to by $t4.

There are no ’immediate’ versions of loading values into floating-point
registers.
Copying data in the co-processors, like copying in the main processor,
is done with move instructions:

• mov.s $f0, $f2: Copy contents of single-register $f2 into single-
register $f0.

• mov.d $f0, $f2: Copy contents of double-registers {$f2,$f3}
into double-registers {$f0,$f1}.

Moving data between processors. Note that these do not convert the
data; they simply copy the bit pattern:

• mtc1 $t0, $f0: (Move to). Copy contents of int-register $t0

into register $f0 of the co-processor.

• mfc1 $t0, $f0: (Move from). Copy contents of float-register
$f0 into int-register $t0.

Data conversion:

• cvt.TO-TYPE.FROM-TYPE $f0, $f3: Convert from format FROM-
TYPE to format TO-TYPE (either ’s’, ’d’, or ’w’). Example:

cvt.d.w $f0, $f3

convert the integer in $f3 to double and store the result in reg-
isters {$f0,$f1}. Both operands are in the floating point co-
processor; it can thus store integers as well.

Conditional branching: In contrast to integer branching instructions
that can go in a single step, floating-point branching always goes in two
steps. In the first step the condition is calculated and in the second
step a conditional jump is made on basis of the resulting condition
value:

64

• c.COND.TYPE $f0, $f4: Sets condition flag true or false. COND:
’eq’, ’gt’, ’lt’, ’le’, or ’ge’. TYPE: ’s’, or ’d’, Example:

c.lt.d $f0, $f4

Set condition flag to true if double {$f0,$f1} is less than double
{$f4,$f5}.

• bc1t $t4: Branch if condition flag in co-processor-1 is true to
address stored in register $t4. Example:

bc1t $t4

nop

The nop (no operation) instruction is needed to align the next
code to an address being a multiple of 4 (because such branching
instructions are less than 4 bytes).
bc1f $t4: Same as bc1t, but branches when condition is false.

Floating point arithmetic is done by the same mnemonics as for integer
arithmetic by simply adding a specification of the format (.s or .d).
Note that, also here, there is no ’immediate’ variant of the instructions;
the input operands are always registers.

• OP.TYPE $f0, $f2, $f4: Perform arithmetic operation OP (’add’,
’sub’, ’mul’ or ’div’) of type TYPE (’s’ or ’d’) on $f4 and $f2

and store the result in $f0. Example:

add.d $f0, $f2, $f4

Add the double in {$f4,$f5} to the double in {$f2,$f3} and
store the result in {$f0,$f1}

Exercise:

Check your answers of the above exercises with MIPS
assembler programs.

Answer. Example:
Source code:

65

###

#

MIPS assembler program to convert int to float

#

###

.text

li $t0, 9 # substitute your int here

mtc1 $t0, $f0 # move bit pattern to $f0

cvt.s.w $f12, $f0 # convert word in $f0 to float and put in $f12

li $v0,2

syscall # print float in $f12

li $v0, 10

syscall

check in Coproc 1:$f12 what the hex code is for the number

Output:

9.0

-- program is finished running --

We finish this section with a worked out example of floating point
calculations. Namely a way to calculate any function with the method
of Newton-Raphson. In this example we calculate the square root, a
floating point function that is not implemented in hardware, so that
we have to calculate it with software. This is not so difficult, as will
be shown.

Calculating the square-root x of an input value (argument) A, or
in other words x =

√
A, is the same problem as determining which

x, when multiplied by itself, results in A, or in other words x2 = A.
This, in turn, is the same as finding the zero of a function

f(x) = x2 −A

For this we can use the numerical recipe of Newton and Raphson. It
consists of making successive guesses as to where the zero will be, based
on the function value and its derivative at a certain point x. Picture
15 explains this. Starting at a point x0, an estimation of where the
zero might be is made on basis of the function value and derivative at

66

f%&'

x

x0

x1

f%& '0

Picture 15: Method of Newton-Raphson for finding zeros in func-
tions. Starting at a point x0, a new estimation x1 is found based on the
function value and its derivative at x0, namely x1 = x0−f(x0)/f

′(x0)

x0. Successive iterations will lead to the x-value at which the function
is zero. This will be then square root of the argument. In other words,
at each step

xi+1 = xi −
f(xi)

f ′(xi)

In this case

xi+1 = xi −
x2
i −A

2xi

These iterations use simple multiplications, divisions and subtractions,
all implemented in MIPS hardware and part of its instruction set. The
only thing that remains is to determine when we can stop; when the
calculation is close enough. In other words, we have to implement a
loop of the type repeat-until (or do-while) a certain condition is met,
when two successive iterations give a value for x close enough, let us
say less than the precision δx aimed at.

As an example, let’s calculate the square root of 30.0 with the
precision of δx = 0.01. We need to start somewhere, it could be
anywhere (positive), so why not 30.0 itself? We then get the following
sequence:

67

i xi xi+1 ∆x
0 30.0 15.5 14.5
1 15.5 8.72 6.78
2 8.72 6.08 1.64
3 6.08 5.51 0.57
4 5.51 5.48 0.03
5 5.48 5.48 0.00

So,
√
30.0 = 5.48 ± 0.01. Below here is the entire Newton-Raphson

root-calculation in MIPS, with 0.000001 precision. (Note that the mul-
tiplication of xi by 2 is replaced by an addition of xi to itself, because
additions are much faster than multiplications):

Source code:

###

#

MIPS assembler program implements Newton-Raphson method

to calculate the square root of a number

#

###

.data

answer: .asciiz "Its square root is: "

precision: .float 0.000001

.text

li $a0, 30 # argument: 30

mtc1 $a0, $f0 # move to co-processor

cvt.s.w $f0, $f0 # convert int to float

lwc1 $f1, precision # load 0.000001 into $f1

f0: A

f1: precision

f2: xi

mov.s $f2, $f0 #x0 = A

dowhile:

x(i+1) = xi - (xi*xi - A)/(xi+xi)

mul.s $f5, $f2, $f2 # $f5 = xi*xi

sub.s $f5, $f5, $f0 # $f5 = xi*xi-A

add.s $f6, $f2, $f2 # $f6 = 2xi

div.s $f5, $f5, $f6 # $f5 = (xi^2-A)/(2xi) = delta x

sub.s $f2, $f2, $f5 # $f2 = xi - (xi^2-A)/(2xi)

68

c.lt.s $f5, $f1

bc1f dowhile

print result:

la $a0, answer

li $v0, 4

syscall

mov.s $f12, $f2

li $v0, 2

syscall # print float in $f12

li $v0, 10

syscall # end program

Output:

Its square root is: 5.477226

-- program is finished running --

Exercise:

Write a program that finds out which of the pairs of
coordinates is closest to each other? The distance is
given by

dij =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2.

The data of the 10 points in space are given by

.data

mylabel: .float

-86.197052961678, -11.611577927042, 61.992590409186,

13.27904907337, 19.916714939069, -20.722319227382,

-4.2258863849783, 45.297465287969, -90.569809463764,

-95.944184921756, 47.662103394222, 64.51404880929,

-21.807443326017, -24.698308698634, 75.762861069285,

-36.654951049497, 43.494575924847, 86.447702712523,

47.778522103541, -65.538547015254, 59.179507921132,

54.530144848978, -67.933306319424, -36.693280039158,

84.306270676353, 21.53150037385, 44.934044045448,

73.659364837401, 81.085378856605, -73.1797878870

69

jumping

function

function

call

code

?

?

call

calljump

jump

Picture 16: Difference between simple jumping (GOTO) on the left
and function calling (GOSUB) on the right. For function calls we have
to remember what was the address of the code that was interrupted
by the function call, otherwise we do not know where to return to

They are organized according to:
x1, y1, z1,
x2, y2, z2,
etc.

Functions and the stack

Procedures and functions — the difference between them is that func-
tions return a value, where procedures don’t – are code that can be
called from anywhere within the program, including other procedures
and functions. If a function calls itself, it is called recursive, an exam-
ple of which will be given here too. The important thing of functions
and procedures is that, after the code of them has finished, the pro-
gram should continue at the point where it was interrupted by the
function call, see Picture 16. It therefore has to save somewhere this
information of where it was interrupted. We will see how this is done.
In fact, MIPS is already well prepared for implementing this high-level
programming concept, a concept that for instance in BASIC is GOSUB,
there where simple jumps are GOTO.

In a first example we will use a very simple procedure that prints a

70

text. Note that the address of the text is passed as an argument to the
procedure. This avoids that the procedure is dependent on the rest of
the program and in this way we can write code that can be recycled.
If we do our work carefully, functions can be taken out of our program
and inserted in other programs without any modification. In fact, we
can keep a set of functions – a library of functions – in separate files,
ready to be used when necessary. This ensures that we will not keep
reinventing the wheel every time we need it.

However, the main difference between normal code we have seen so
far and functions is that a function can be called from various places
in the program, and when the function finishes the program should
continue at the instruction directly following the code that called the
function. Therefore, simple jump (j) instructions are not adequate,
because they jump to a static address (the value of the label contained
in it).

A call to the function is done by a so-called jump-and-link (jal)
to that address. This is doing two distinct things:

• Calculate pc+4 and save this in register $ra. pc+4 → ($ra). It
points to the first instruction after the jal.

• j address, or in other words, address → pc.

Now note the direct ’4’ at one of the input gates of the ALU in ar-
chitecture of Picture 7. This now makes sense; the jal instruction
is directly implemented in hardware and is thus faster than it would
have been had it been implemented by software. Returning from a
function is achieved by a jump-on-register, which returns to the main
program.

• jr $ra. Or in other words, ($ra) → pc.

To make functions independent of the main code, functions cannot
use information of the main program! In high-level programming it
means that functions are not allowed to use global variables. If infor-
mation is to be used in a function, this information has to be passed
to the function, either by directly supplying the value, or by supplying
the address where the value is stored. The former is called passing by
value, the latter passing by reference. Similarly, if the function gener-
ates a value, it should not store this in a global variable, but rather in

71

the return value (or placed in the memory address that was passed to
the function as an argument).

In assembler, four registers are used to pass arguments to functions,
$a0 . . . $a3. If more arguments are needed, for instance an entire array,
we have to pass the address to the information to the function. In the
following example, the function is placed after the main code. It simply
prints the string (an array of chars), the address of which is passed as
an argument in $a0.

###

MIPS assembler program that shows how

to implement a procedure

###

.data

text1: .asciiz "Text to print\n"

.text

la $a0, text1 # argument passed to procedure

jal procedure # call procedure

stores pc+4 into $ra and makes a "j procedure"

returning from procedure, program continues

with next instruction:

terminate program:

li $v0, 10

syscall

################ FUNCTIONS: ####################

procedure:

###

arguments:

$a0: address of null-terminated string

return value(s):

none

###

li $v0, 4

syscall

jr $ra # return to address saved in $ra

Output:

72

Text to print

-- program is finished running --

The following example shows how to implement a function that
receives arguments and returns a value. In this case it implements the
function xn, with x and n received in $a0 and $a1, respectively, and
the function returns the calculated value in $v0.

###

MIPS assembler program that shows how

to implement a function

###

.data

.text

li $a0, 3

li $a1, 5

jal power # call function $v0 = power($a0, $a1)

print result:

move $a0, $v0

li $v0, 1

syscall

terminate program:

li $v0, 10

syscall

################ FUNCTIONS: ####################

power:

###

arguments:

$a0: x

$a1: n

return value(s):

$v0: x^n

###

implemented with a while loop

li $v0, 1

power_startloop:

73

beqz $a1, power_exit

mul $v0, $v0, $a0

subi $a1, $a1, 1

j power_startloop

power_exit:

jr $ra

Output:

243

-- program is finished running --

Moreover, to make functions fully independent of the rest of the
code, the state of the registers has to be unaltered by the function call.
In MIPS we use the following convention:

• The t-registers are the responsibility of the calling code. The
’caller’. If the caller is still going to use these t-register values
after the function call, the caller has to save them before calling
the function and retrieve them immediately after returning from
the function. Note that t-registers that will no longer be needed
after the function call do not have to be saved. Note also that
no s-registers have to be saved at all. ”Not my problem!”

• The s-registers are the responsibility of the called code. The
’callee’. If the callee (function) is going to use these s-registers
in the function, the callee has to save their values before using
these registers and make sure to retrieve them all before exiting

the function; the caller relies — or might rely; we have to assume
they do! — on the fidelity of the s-register values. Note that s-
registers that will not be used by the callee function do not have
to be saved. Note also that no t-registers have to be saved at all
by the callee. ”Not my problem!”

These registers have to be saved somewhere in memory before the
instructions of the function are executed and retrieved afterwards. The
best place to do that is the stack. A stack differs from conventional
memory — the ’heap’ — in that, whereas all elements of the heap are
always accessible at all times, only the top value of the stack — the

74

latest one placed there — is accessible. This implements the LIFO-
concept (last in, first out). We can thus place a value — ’push’ — on
top of the stack, or remove — ’pop’ — one from the stack. Special
instructions for popping and pushing items on the stack do not exist,
but they can easily be implemented. There does exist a special stack
pointer register ($sp). Pushing and popping is thus implemented as
(an example of storing $t0):

• push:
addi $sp, $sp, -4

sw $t0, ($sp)

• pop:
lw $t0, ($sp)

addi $sp, $sp, 4

The stack is thus growing and shrinking every time we push and pop
items. Note that we have to do this in the correct order (last in, first
out) and also in the correct number; every item pushed on the stack
has to be popped off it, otherwise the stack runs the risk of over- or
underflowing. Note also that the order of changing the stack pointer
and accessing the memory pointed to by the stack pointer is reversed
in pops and pushes, as shown here above. The reason may be obvious.

The code below shows an example of a main code and a function
that both use both $t0 and $s0 where it is shown which one is respon-
sible for saving and restoring which of these register values. It loads
the values of 3 and 4 into $t0 and $s0, then copies these to $a0 and
$a1 because the function expects them as arguments there. The caller
code saves the t-register on the stack and the function the s-register it
uses. As can be seen, the values are restored and when printed they
have their original value of 3 and 4 at the end.

###

MIPS assembler program that shows how

to use the stack

###

.text

li $t0, 3

li $s0, 4

75

move $a0, $t0 # pass arguments

move $a1, $s0 # to function

addi $sp, $sp, -4 # push $t0

sw $t0, ($sp) # onto stack

jal multi # call function

lw $t0, ($sp) # pop $t0

addi $sp, $sp, 4 # from stack

print result:

move $a0, $v0

li $v0, 1

syscall

check if $t0 and $s0 changed:

move $a0, $t0

syscall # print $t0

move $a0, $s0

syscall # print $s0

terminate program:

li $v0, 10

syscall

################ FUNCTIONS: ####################

multi:

###

arguments:

$a0: int

$a1: int

return value(s):

$v0 = $a0 * $a1

###

addi $sp, $sp, -4 # push $s0

sw $s0, ($sp) # onto stack

move $t0, $a0

move $s0, $a1

mul $v0, $t0, $s0

lw $s0, ($sp) # pop $s0

addi $sp, $sp, 4 # from stack

multi_exit:

jr $ra

Output:

76

1234

-- program is finished running --

Note that if the function is going to call other functions, we also
need to save the return address on the stack before we issue a jal.
Here is an example of a recursive function that calculates the factorial
n! of the argument n:

###

MIPS assembler program that shows an

example of a recursive function

###

.text

li $a0, 5

jal factorial

#print result:

move $a0, $v0

li $v0, 1

syscall

terminate program:

li $v0, 10

syscall

################ FUNCTIONS: ####################

factorial:

###

arguments:

$a0: int n

return value(s):

$v0 = n!

###

li $v0, 1

beqz $a0, factorial_exit # 0! = 1; exit

addi $a0, $a0, -1

addi $sp, $sp, -4 # save $ra

sw $ra, ($sp) # onto stack

jal factorial # $v0 = (n-1)!

lw $ra, ($sp) # retrieve $ra

addi $sp, $sp, 4 # from stack

77

addi $a0, $a0, 1

mul $v0, $v0, $a0 # $v0 = n*(n-1)!

factorial_exit:

jr $ra

Output:

120

-- program is finished running --

Calculating blockchain

Time to look at an extensive example to finalize this book. Blockchain
may serve very well. It consists of encrypting data by executing many
simple logical operations on it. Operations like xor, shift-left, etc.
Perfect for assembler programming. More so since blockchain is money
— or can be money, in case of bitcoin — and time is money, so the
faster our program is, the richer we get.

The most famous is the SHA-256 algorithm that is shown in Picture
17 (source of picture and description: ”Mining Bitcoin with pencil and
paper: 0.67 hashes per day” on Ken Shirriff’s blog). It takes eight
32-bit pieces of data (A to H), and two key registers, Kt and Wt and
performs the following actions on them:

• The Ma majority box looks at the bits of A, B, and C. For each
position, if the majority of the bits are 0, it outputs 0. Otherwise
it outputs 1. That is, for each position in A, B, and C, look at
the number of 1 bits. If it is zero or one, output 0. If it is two
or three, output 1.

• The Σ0 box rotates the bits of A to form three rotated versions,
and then sums them together modulo 2. In other words, if the
number of 1 bits is odd, the sum is 1; otherwise, it is 0. The
three values in the sum are A rotated right by 2 bits, 13 bits,
and 22 bits.

• The Ch ’choose’ box chooses output bits based on the value of
input E. If a bit of E is 1, the output bit is the corresponding bit
of F. If a bit of E is 0, the output bit is the corresponding bit of

78

Picture 17: Example of the SHA-256 algorithm of encrypting data
(A-H). Picture from Wikipedia

G. In this way, the bits of F and G are shuffled together based
on the value of E.

• The next box Σ1 rotates and sums the bits of E, similar to Σ0
except the shifts are 6, 11, and 25 bits.

• The plus boxes +� perform 32-bit addition, generating new values
for A and E. The input Wt is based on the input data, slightly
processed. (This is where the input block gets fed into the algo-
rithm). The input Kt is a constant defined for each round.

Example of a single pass of SHA-256: Starting with
A = 0x87564C0C

B = 0xF1369725

C = 0x82E6D493

D = 0x63A6B509

E = 0xDD9EFF54

F = 0xE07C2655

G = 0xA41F32E7

H = 0xC7D25631

79

Wt = 0x6534EA14

Kt = 0xC67178F2

we wind up with
A = 0xE620B22B

B = 0x87564C0C

C = 0xF1369725

D = 0x82E6D493

E = 0xADCEF783

F = 0xDD9EFF54

G = 0xE07C2655

H = 0xA41F32E7

That’s it. 64 times repeating and if the first 17 bits of register A are
zeros, then we have found a new block in the blockchain. If not, we
have to start with a new key (a.k.a. ’nonce’).

Exercise:

Write a MIPS program that calculates a blockchain:
repeating starting with random keys and the data as
given above until the first 17 bits of A are 0.

80

A| MIPS Instruction set

Mne- Opcode Meaning Type Operation
monic (func)
sll 0 (0) Shift left logical R $rd = $rs≪num

srl 0 (2) Shift right logical R $rd = $rs≫num

sra 0 (3) Shift right arithmetic R $rd = $rs≫num+msb

sllv 0 (4) Shift left logic. var. R $rd = $rs≪$rt

srlv 0 (6) Shift right logic. var. R $rd = $rs≫$rt

srav 0 (7) Shift right arithm. var. R $rd = $rs≫$rt+msb

add 0 (20) Add R $rd = $rs+$rt

addu 0 (21) Add unsigned R $rd = $rs+$rt

sub 0 (22) Subtract R $rd = $rs-$rt

subu 0 (23) Subtract unsigned R $rd = $rs-$rt

addi 8 Add immediate I $rt = $rs+imm

addiu 9 Add immediate I $rt = $rs+imm

unsigned
mult 0 (18) Multiply R HI,LO = $rs*$rt

multu 0 (19) Multiply unsigned R HI,LO = $rs*$rt

div 0 (1a) Divide R LO = $rs/$rt

HI = $rs%$rt

divu 0 (1b) Divide unsigned R LO = $rs/$rt

HI = $rs%$rt

and 0 (24) And R $rd = $rs&$rt

andi c And immediate I $rt = $rs&imm

or 0 (25) Or R $rd = $rs|$rt

nor 0 (27) Nor R $rd = !($rs|$rt)

ori d Or immediate I $rt = $rs|imm

xor 0 (26) Xor R $rd = $rsˆ$rt

xori e Xor immediate I $rt = $rsˆimm

Instruction types: R: registers, I: immediate

81

Mne- Opcode Meaning Type Operation
monic (func)
slt 0 (2a) Set if less than R $rd = ($rs<$rt)?1:0
sltu 0 (2b) Set if less than R $rd = ($rs<$rt)?1:0

unsigned
slti a Set if less than imm. I $rt = ($rs<imm)?1:0
sltiu b Set if less than imm. I $rt = ($rs<imm)?1:0

unsigned
j 2 Jump J PC=addr

jal 2 Jump and link J $ra=PC+4, PC=addr

jr 0 (8) Jump register R PC=$rs

jalr 0 (8) Jump and link register R $ra=PC+4, PC=$rs

beq 4 Branch if equal I $rs==$rt? PC=PC+4+imm

bne 5 Branch if not equal I $rs!=$rt? PC=PC+4+imm

blt - Branch if less than P $rs<$rt? PC=PC+4+imm

bgt - Branch if greater than P $rs>$rt? PC=PC+4+imm

ble - Branch if less or equal P $rs<=$rt? PC=PC+4+imm

bge - Branch if greater or eq. P $rs>=$rt? PC=PC+4+imm

move - Move (copy) P $rd=$rs

mfhi 0 (10) Move from high R $rd=HI

mflo 0 (12) Move from low R $rd=LO

mfc0 16 Move from control R $rd=CR[$rs]

lb 20 Load byte I $rt=$rt+M[$rs+imm] ∗

lbu 24 Load byte unsigned I $rt=$rt+M[$rs+imm] ∗

lhu 25 Load half word I $rt=$rt+M[$rs+imm] ∗

lui f Load upper imm. I $rt=$rt+imm ∗

lw 23 Load word I $rt=$rt+M[$rs+imm]

li - Load immediate P $rd=imm

la - Load address (=li) P $rd=imm

sb 28 Store byte I M[$rs+imm]=$rt ∗

sh 29 Store half word I M[$rs+imm]=$rt ∗

sw 2b Store word I M[$rs+imm]=$rt

lwc1 31 FP load single I $ft = M[$fs+imm]

ldc1 35 FP load double I 2×$ft = M[$fs+imm]

swc1 39 FP store single I M[$fs+imm] = $ft

sdc1 3d FP store double I M[$fs+imm] = 2×$ft

c.eq.TYPE 11 (32) FP equal FR COND = ($ft==$ft)?1:0

c.lt.TYPE 11 (3c) FP less than FR COND = ($ft<$ft)?1:0

c.le.TYPE 11 (3e) FP less or equal FR COND = ($ft<=$ft)?1:0

c.gt.TYPE - FP greater than P COND = ($ft>$ft)?1:0

c.ge.TYPE - FP greater or eq. P COND = ($ft>=$ft)?1:0

bc1t 111 FP branch on true FI COND? PC=PC+4+imm

bc1f 110 FP branch on false FI !COND? PC=PC+4+imm

Instruction types: R: registers, I: immediate, P: pseudo-code, J: jump
∗: appropriate bits only
TYPE = s (=10), d (=11)
2×: 2 consecutive float registers
1: ft=1, 0: ft=0

82

Mne- Opcode Meaning Type Operation
monic (func)
add.s 11 (0) FP Add single FR $fd = $fs+$ft

sub.s 11 (1) FP Subtract single FR $fd = $fs-$ft

mul.s 11 (2) FP Multiply single FR $fd = $fs*$ft

div.s 11 (3) FP Divide single FR $fd = $fs/$ft

add.d 11 (0) FP Add double FR 2×$fd = 2×$fs+2×$ft

sub.d 11 (1) FP Subtract double FR 2×$fd = 2×$fs-2×$ft

mul.d 11 (2) FP Multiply double FR 2×$fd = 2×$fs*2×$ft

div.d 11 (3) FP Divide double FR 2×$fd = 2×$fs/2×$ft

Instruction types: F: float, R: registers
TYPE = s (=10), d (=11)
2×: 2 consecutive float registers

051015202531

opcode rs rt rd num)*,-R

opcode rs rtI

opcode rs immJ

opcode TYPE ft fs fd funcFR

opcode TYPE ftFI

26 21 16 11 6

imm

imm

83

B| Assembler directives

Directive Meaning Example
.data Start of data segment
.kdata Start of kernel data segment
.text Start of code segment
.ktext Start of kernel code segment
.ascii <str> Store <str> in memory .ascii "Ajax"

.asciiz <str> Store <str>+00 in memory .ascii "Benfica"

.byte b1, b2 ..., bn Store byte(s) in memory

.half h1, h2 ..., hn Store half-word(s) in memory

.word w1, w2 ..., wn Store word(s) in memory float 1.0, 2.1, 3.6

.double d1, d2 ..., dn Store double-precision float(s) .double 3.14E03

in memory
.eqv define constant (does not store myvalue .eqv 64

it in memory)

85

C| System calls

function $v0 argument(s) return value(s)

print integer 1 $a0 = integer
print float 2 $f12 = float
print double 3 $f12, $f13 = double
print string 4 $a0 = address of null-

terminated string
read integer 5 $v0 integer read
read float 6 $f0 float read
read double 7 $f0 double read
read string 8 $a0 = address of buffer

$a1 = max. length
exit (terminate 10
execution)
print character 11 $a0 = character
read character 12 $v0 character read
print integer 34 $a0 = integer
in hexadecimal
print integer 35 $a0 = integer
in binary
print integer 36 $a0 = integer
as unsigned
set random seed 40 $a0 = integer
random int 41 $a0 random int $a0 next random int

87

D| ASCII

D
ec

H
ex

B
in

V
a
lu

e
M

ea
n
in

g
0

0
0

0
0
0
0
0
0
0

N
U

L
N

u
ll

ch
a
ra

ct
er

1
0
1

0
0
0
0
0
0
1

S
O

H
S
ta

rt
o
f
h
ea

d
er

2
0
2

0
0
0
0
0
1
0

S
T

X
S
ta

rt
o
f
te

x
t

3
0
3

0
0
0
0
0
1
1

E
T

X
E

n
d

o
f
te

x
t

(C
tr

l-
C

)
4

0
4

0
0
0
0
1
0
0

E
O

T
E

n
d

o
f
tr

a
n
sm

is
si

o
n

5
0
5

0
0
0
0
1
0
1

E
N

Q
E

n
q
u
ir
y

6
0
6

0
0
0
0
1
1
0

A
C

K
A

ck
n
ow

le
d
g
e

7
0
7

0
0
0
0
1
1
1

B
E

L
B

el
l

8
0
8

0
0
0
1
0
0
0

B
S

B
a
ck

sp
a
ce

9
0
9

0
0
0
1
0
0
1

H
T

H
o
ri
zo

n
ta

l
ta

b
1
0

0
A

0
0
0
1
0
1
0

L
F

L
in

e
fe

ed
∗

1
1

0
B

0
0
0
1
0
1
1

V
T

V
er

ti
ca

l
ta

b
1
2

0
C

0
0
0
1
1
0
0

F
F

F
o
rm

fe
ed

1
3

0
D

0
0
0
1
1
0
1

C
R

C
a
rr

ia
g
e

re
tu

rn
∗

1
4

0
E

0
0
0
1
1
1
0

S
O

S
h
if
t

o
u
t

1
5

0
F

0
0
0
1
1
1
1

S
I

S
h
if
t

in
1
6

1
0

0
0
1
0
0
0
0

D
L
E

D
a
ta

li
n
k

es
ca

p
e

1
7

1
1

0
0
1
0
0
0
1

X
O

N
D

ev
ic

e
co

n
tr

o
l
1

1
8

1
2

0
0
1
0
0
1
0

D
C

2
D

ev
ic

e
co

n
tr

o
l
2

1
9

1
3

0
0
1
0
0
1
1

X
O

F
F

D
ev

ic
e

co
n
tr

o
l
3

2
0

1
4

0
0
1
0
1
0
0

D
C

4
D

ev
ic

e
co

n
tr

o
l
4

2
1

1
5

0
0
1
0
1
0
1

N
A

K
N

o
t

a
ck

n
ow

le
d
g
e

2
2

1
6

0
0
1
0
1
1
0

S
Y

N
S
y
n
ch

ro
n
o
u
s

id
le

2
3

1
7

0
0
1
0
1
1
1

E
T

B
E

n
d

o
f
tr

a
n
sf

er
b
lo

ck
2
4

1
8

0
0
1
1
0
0
0

C
A

N
C

a
n
ce

l
2
5

1
9

0
0
1
1
0
0
1

E
M

E
n
d

o
f
m

ed
iu

m
2
6

1
A

0
0
1
1
0
1
0

S
U

B
S
u
b
st

it
u
te

(C
tr

l-
Z
)

2
7

1
B

0
0
1
1
0
1
1

E
S
C

E
sc

a
p
e

2
8

1
C

0
0
1
1
1
0
0

F
S

F
il
e

se
p
a
ra

to
r

2
9

1
D

0
0
1
1
1
0
1

G
S

G
ro

u
p

se
p
a
ra

to
r

3
0

1
E

0
0
1
1
1
1
0

R
S

R
ec

o
rd

se
p
a
ra

to
r

3
1

1
F

0
0
1
1
1
1
1

U
S

U
n
it

se
p
a
ra

to
r

∗
:

U
N

IX
(L

in
u
x
):

n
ew

li
n
e

is
L
F
,
M

S
-D

O
S

(W
in

d
ow

s)
:

n
ew

li
n
e

is
C

R
+

L
F

89

D
ec

H
ex

B
in

V
a
lu

e
D

ec
H

ex
B

in
V
a
lu

e
D

ec
H

ex
B

in
V
a
lu

e
3
2

2
0

0
1
0
0
0
0
0

sp
a
ce

6
4

4
0

1
0
0
0
0
0
0

@
9
6

6
0

1
1
0
0
0
0
0

’
3
3

2
1

0
1
0
0
0
0
1

!
6
5

4
1

1
0
0
0
0
0
1

A
9
7

6
1

1
1
0
0
0
0
1

a
3
4

2
2

0
1
0
0
0
1
0

"
6
6

4
2

1
0
0
0
0
1
0

B
9
8

6
2

1
1
0
0
0
1
0

b
3
5

2
3

0
1
0
0
0
1
1

#
6
7

4
3

1
0
0
0
0
1
1

C
9
9

6
3

1
1
0
0
0
1
1

c
3
6

2
4

0
1
0
0
1
0
0

$
6
8

4
4

1
0
0
0
1
0
0

D
1
0
0

6
4

1
1
0
0
1
0
0

d
3
7

2
5

0
1
0
0
1
0
1

%
6
9

4
5

1
0
0
0
1
0
1

E
1
0
1

6
5

1
1
0
0
1
0
1

e
3
8

2
6

0
1
0
0
1
1
0

&
7
0

4
6

1
0
0
0
1
1
0

F
1
0
2

6
6

1
1
0
0
1
1
0

f
3
9

2
7

0
1
0
0
1
1
1

’
7
1

4
7

1
0
0
0
1
1
1

G
1
0
3

6
7

1
1
0
0
1
1
1

g
4
0

2
8

0
1
0
1
0
0
0

(
7
2

4
8

1
0
0
1
0
0
0

H
1
0
4

6
8

1
1
0
1
0
0
0

h
4
1

2
9

0
1
0
1
0
0
1

)
7
3

4
9

1
0
0
1
0
0
1

I
1
0
5

6
9

1
1
0
1
0
0
1

i
4
2

2
A

0
1
0
1
0
1
0

*
7
4

4
A

1
0
0
1
0
1
0

J
1
0
6

6
A

1
1
0
1
0
1
0

j
4
3

2
B

0
1
0
1
0
1
1

+
7
5

4
B

1
0
0
1
0
1
1

K
1
0
7

6
B

1
1
0
1
0
1
1

k
4
4

2
C

0
1
0
1
1
0
0

,
7
6

4
C

1
0
0
1
1
0
0

L
1
0
8

6
C

1
1
0
1
1
0
0

l
4
5

2
D

0
1
0
1
1
0
1

-
7
7

4
D

1
0
0
1
1
0
1

M
1
0
9

6
D

1
1
0
1
1
0
1

m
4
6

2
E

0
1
0
1
1
1
0

.
7
8

4
E

1
0
0
1
1
1
0

N
1
1
0

6
E

1
1
0
1
1
1
0

n
4
7

2
F

0
1
0
1
1
1
1

/
7
9

4
F

1
0
0
1
1
1
1

O
1
1
1

6
F

1
1
0
1
1
1
1

o
4
8

3
0

0
1
1
0
0
0
0

0
8
0

5
0

1
0
1
0
0
0
0

P
1
1
2

7
0

1
1
1
0
0
0
0

p
4
9

3
1

0
1
1
0
0
0
1

1
8
1

5
1

1
0
1
0
0
0
1

Q
1
1
3

7
1

1
1
1
0
0
0
1

q
5
0

3
2

0
1
1
0
0
1
0

2
8
2

5
2

1
0
1
0
0
1
0

R
1
1
4

7
2

1
1
1
0
0
1
0

r
5
1

3
3

0
1
1
0
0
1
1

3
8
3

5
3

1
0
1
0
0
1
1

S
1
1
5

7
3

1
1
1
0
0
1
1

s
5
2

3
4

0
1
1
0
1
0
0

4
8
4

5
4

1
0
1
0
1
0
0

T
1
1
6

7
4

1
1
1
0
1
0
0

t
5
3

3
5

0
1
1
0
1
0
1

5
8
5

5
5

1
0
1
0
1
0
1

U
1
1
7

7
5

1
1
1
0
1
0
1

u
5
4

3
6

0
1
1
0
1
1
0

6
8
6

5
6

1
0
1
0
1
1
0

V
1
1
8

7
6

1
1
1
0
1
1
0

v
5
5

3
7

0
1
1
0
1
1
1

7
8
7

5
7

1
0
1
0
1
1
1

W
1
1
9

7
7

1
1
1
0
1
1
1

w
5
6

3
8

0
1
1
0
1
0
0

8
8
8

5
8

1
0
1
1
0
0
0

X
1
2
0

7
8

1
1
1
0
1
0
0

x
5
7

3
9

0
1
1
1
0
0
1

9
8
9

5
9

1
0
1
1
0
0
1

Y
1
2
1

7
9

1
1
1
1
0
0
1

y
5
8

3
A

0
1
1
1
0
1
0

:
9
0

5
A

1
0
1
1
0
1
0

Z
1
2
2

7
A

1
1
1
1
0
1
0

z
5
9

3
B

0
1
1
1
0
1
1

;
9
1

5
B

1
0
1
1
0
1
1

[
1
2
3

7
B

1
1
1
1
0
1
1

{
6
0

3
C

0
1
1
1
1
0
0

<
9
2

5
C

1
0
1
1
1
0
0

\
1
2
4

7
C

1
1
1
1
1
0
0

|
6
1

3
D

0
1
1
1
1
0
1

=
9
3

5
D

1
0
1
1
1
0
1

]
1
2
5

7
D

1
1
1
1
1
0
1

}
6
2

3
E

0
1
1
1
1
1
0

>
9
4

5
E

1
0
1
1
1
1
0

ˆ
1
2
6

7
E

1
1
1
1
1
1
0

~
6
3

3
F

0
1
1
1
1
1
1

?
9
5

5
F

1
0
1
1
1
1
1

_
1
2
7

7
F

1
1
1
1
1
1
1

d
el

et
e

90

i | Index

#, 36
0x, 22

add, 42
and, 43
arithmetic shift, 43
array, 51
ASCII, 22, 87
.ascii, 36
.asciiz, 36
assembler directives, 34, 83

BCD, 22
beq, 46
beqz, 46, 47
bge, 46
bgez, 46
bgt, 46, 47
bgtz, 46
big endian, 30
binary numbers, 15
binary-coded decimal, 22
bitcoin, 76
ble, 46
blez, 46
blockchain, 76
blt, 46

bltz, 46
bne, 46
bnez, 46
branching, 45

callee, 73
caller, 72
code segment, 34
comment, 36

.data, 34
data segment, 34
decimal system, 11
denormalized numbers, 60
destination operand, 34
digital electronics, 5
diode, 4
textttdiv, 42
do-while loop, 49

Ebers-Moll, 4
engineering notation, 57
.eqv, 35

factorial, 75
finite-state machine, 3
floating-point numbers, 15, 56, 59

91

for loop, 49
functions, 68

goto, 45

heap, 73
hexadecimal, 21
hexal system, 11
HI, 42

IEEE 754, 59
if . . . then goto, 45
immediate, 34
implied 1., 60
infinity, 60

j, 45
jump, 45

Karnaugh maps, 5

la, 40
largest normalized number, 61
li, 38
little endian, 30
LO, 42
load address, 40
load immediate, 38
logic gates, 5
logic shift, 43
LSB, 18
lw, 40

macro-assembler, 8
Maya number system, 12
memory mapping, 52
mfhi, 42
mflo, 42
micro-assembler, 8

mnemonic, 33
move, 38
MSB, 18
mult, 42

NaN, 60
negative numbers, 18
Newton-Raphson, 65
non-linear electronics, 4
nor, 43
not a number, 60

opcode, 33
operand, 33
or, 43

paging, 45
passing by reference, 70
passing by value, 70
pop, 73
pseudo instruction, 29, 38, 40, 46
push, 73

recursive function, 75
rol, 44
Roman numbers, 14
ror, 44

s-registers, 29, 73
scientific notation, 57
score, 11
SHA-256, 76
shift, 43
sign-magnitude, 15, 18
significand, 60
sll, 44
sllv, 44
slt, 47
smallest denormalized number, 61

92

smallest normalized number, 61
source operand, 34
square root, 65
sra, 44
srav, 44
srl, 44
srlv, 44
stack, 68, 73
struct, 51
sub, 42
sw, 40
syscall, 37
system calls, 36

t-registers, 29, 72
target operand, 34
.text, 34
third-generation programming lan-

guages, 8
transistor, 4

unsigned integer, 18

while loop, 49
.word, 34

xor, 43

YWIYGI, 23, 35

zero, 12, 60

93

